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Abstract
Existing discussions of AGI safety have primarily
involved preventing dangerous programs from run-
ning on computers. This article focuses instead on
preventing independence gaining AGI from running
based on hardware memory and floating point oper-
ations per second limits. We show that a 64 KiB
memory and storage limit can be used make an in-
dependence gaining AGI practically impossible and
show that higher limits are likely possible. These
limits are substantially below what is required for
current state of the art AI, but the state of the art
is expected to advance, so future limits are useful for
longer term planning.

1 Introduction
Stuart Russell has discussed methods of having safe
AI software (Russell, 2019) and proposed in an in-
terview (Chia and Cianciolo, 2023) “we need to en-
sure that the hardware and the operating system
won’t run anything unless it knows that it’s safe.”
For sufficiently powerful computers (such as ones
that could effectively out think an entire university),
this requires fully understanding the software runs
on the computer. Restricting the software to soft-
ware that has been formally verified to be safe is
one way to demonstrate safety. However, this pa-
per will show that if the computational space and
speed of the hardware is sufficiently limited, the soft-
ware can be unrestricted. The threat model is that
either intentionally or accidentally a human will cre-
ate an AI program that is sufficiently intelligent to
be able to gain independence, such as by creating a
self replicating computer capable of obtaining energy
and other things needed to achieve goals without any
further assistance from humans. Note that some AI
techniques and algorithms are well understood and
probably could be proved to be safe even when run
on extremely powerful computers including minimax
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search with a fixed game of GO evaluation function
and a climate general circulation model.

2 Definitions
For this paper, the definition of Artificial General In-
telligence (AGI) is artificial intelligence that is capa-
ble of performing any scientific, technological, engi-
neering or mathematical (STEM) task that a human
could do that is needed to gain independence. For
example, an independence gaining AGI connected to
today’s internet might complete intellectual tasks for
money and then use the money to mail order printed
circuit boards and other hardware. An independence
gaining AGI with access to 1800s level technology
might mine coal and build a steam engine to power a
Babbage like computer and then bootstrap to faster
computing elements. An independence gaining AGI
on Earth’s moon might be able to produce solar pan-
els and CPUs from the elements in the moon’s crust,
and produce an electromagnetic rail to launch probes
off the moon. So an independence gaining AGI can
use knowledge about the world the AGI is in to de-
sign ways to scale up computational capacity. Note
that independence gaining AGI is a subset of general
AGI, so if an independence gaining AGI is prevented,
that also prevents the less narrow AGI.

Super-intelligence (ASI) is harder to define, but a
working definition is that a super-intelligence AGI
would be capable of out thinking an entire university
or research laboratory for any STEM task necessary
to gain independence; alternatively this is the intel-
ligence of approximately a thousand trained people
working together. For this definition, the intelligence
comes from the people in the university or research
laboratory, not the electronic computing hardware,
otherwise the floating point operations per second
would be primarily from the computers there. For
this definition a university or research laboratory in
roughly 1940 or before would automatically fit it,
but for more modern ones, the computation from the
computers would have to be subtracted off to get the
intelligence from just the humans. There are two
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reasons for the “gain independence” limitation to be
included. The first is to prevent needing to simulate
human brains, for which humans might have an in-
herent advantage. The second is that if the AGI has
the ability and goal to “gain independence” this is
sufficient to be dangerous if the AGI is not aligned
with human goals and ethics.

This paper is concerned with an AGI that is ca-
pable of achieving independence. There are three
basic ways that an AGI could use to achieve inde-
pendence. The three are convincing humans to help,
creating hardware in the environment, or expanding
into other computer infrastructure. Expanding into
other computer infrastructure is already something
that has been done by computer viruses for decades,
and may lead to the AGI gaining other resources
which can be used for one of the other methods to
achieve independence. Computer virus can be writ-
ten in 10s to 100s of instructions, so preventing this is
the computer security problem of securing potential
targets and in many cases can be solved by shutting
down the infected computers. A computer virus is
completely dependent on the computers that it runs
on and so is not physically independent, and while
escaping to other computers to gain resources or to
computers with more access to the physical world
might be an important step to a computer gaining
physical independence, this paper leaves that discus-
sion and research to others.

This paper is primarily concerned with the other
two methods. Convincing humans probably requires
at least some level of fluency in language and some
understanding of how to motivate or negotiate with
humans. Creating hardware in the environment re-
quires both some knowledge of the environment and
some ability to simulate it. The method this paper
uses to show that it is practically impossible for an
AGI to gain independence is to show that the avail-
able computing power does not allow fluent language
and does not allow sufficient simulations.

3 AGI Limits
Having hardware limits for independence gaining
AGI and superintelligent AGI would be useful be-
cause these help assess the risk of running an exper-
imental piece of software. If the software is run on a
higher powered computer, then we need to show the
software is safe. On lower powered computers the
risk is reduced. Running software on a lower pow-
ered computer may require more programming effort
or not be possible. Note that the AGI definition does
not include any speed or timing considerations, only

the super-intelligence definition includes speed. This
is intentional, since an AGI that gains independence
slower than a human would in similar circumstances,
still gains independence.

It is worth noting that the Halting Problem and
Rice’s theorem are for Turing machines with an in-
finite tape; this paper is dealing with machines with
finite space (memory + disk storage), so those the-
orems do not demonstrate that finding a hardware
limit for having the property of being able to run an
independence gaining AGI is impossible.

Estimates of when sufficient compute is available
for simulating a human brain have been done such
as 1 exa FLOP/S in Chen et al. (2019). Computer
transistors and brain neurons are both capable of re-
membering information and boolean logic, however,
using transistors to simulate brain neurons perform-
ing a task will be less efficient than directly perform-
ing the task1 on the computer transistors. 1 exa
FLOP/S is likely a much more powerful computer
than will be needed for AGI (with the possible ex-
ception of tasks that require a deep understanding of
human brains). The inefficiencies of simulating neu-
rons with transistors has been pointed out in Byrnes
(2023). A literature review did not find many existing
estimates for a limit below which an AGI is not pos-
sible. One estimate is that a human level AGI could
be done on an Intel 286 if the programmer is a su-
perintelligent AGI or a “home computer from 1995”
(which roughly corresponds to a 90 MHz Pentium)
if the programmer is a human (Yudkowsky, 2022)
but no method for how this estimate was calculated
is provided which greatly limits the use of this esti-
mate. Byrnes (2023) estimated that 1014 FLOP/S2

and 16 GiB of RAM would likely (75%) be sufficient
for human-level human-speed AGI. This was calcu-
lated by estimating that the amount of information a
human brain stores is possibly less than 10 GiB and
probably less than 100 GiB. Combining that memory
estimate with an estimation that humans are likely
memory-bandwidth limited led Byrnes to a conclu-
sion that 1014 FLOP/S is capable of processing all
the memory-bandwidth. Byrnes estimated a suffi-
cient level for human-level AGI and did not estimate
a lower limit since his estimate was already at the
level of currently available high-end gaming PCs.

1Unless the task is simulating neurons.
2For comparison, an NVIDIA RTX 4090 retail gaming GPU

from 2022 has 8.3e13 FLOP/S.
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4 Limiting Estimates
This section will show that an AGI restricted to 64
KiB of readable and writable space (RAM and re-
writable drives, with no read only storage) is very
unlikely to be capable of gaining independence. Be-
ing fluent at human language or the ability to sim-
ulate the hardware needed to gain independence al-
most certainly will require more than 64 KiB of space.
This section will also discuss requirements for this re-
striction to hold, and IO restrictions and which types
of IO might be allowed. This section will also dis-
cuss mixtures of read only, write once/read many and
read/writable storage.

Fluent English language understanding and cre-
ation appears practically impossible in 64 KiB. A
typical human vocabulary of 20,000 words would not
fit in this amount of space without compression3 and
adding definitions would increase the size even more,
so it would not be possible to fit a program that used
unrestricted language fluently. This lack of ability
means that programs on the computer would be less
able to ask for help from humans, and also less able to
make use of English documents to understand more
about the world.

A 64 KiB computer is unlikely to be able to simu-
late enough of the world to design hardware to gain
independence. For example, a molecular simulation
that used 4 bytes per float, 3 vectors of 3 floats, and
a beginning and end state could not fit a simulation
of a 10x10x10 cube in 64 KiB.4 Another reference
point is P16C5x microcontroller (an LGPL version
of the PIC16C5x microcontroller), which is described
by 19853 bytes of Verilog source code.5 This mi-
crocontroller is a very reduced instruction set com-

3https://www.mit.edu/~ecprice/wordlist.10000 for ex-
ample is 75880 bytes. Those 10,000 words can be compressed
down to 27848 bytes using gzip -9 (version 1.13). This is a
word list, not words with the meaning. Word vectors, which
do have some meaning attached, usually have vector length of
at least 100 (Pennington et al., 2014), so 64 KiB would not
even fit a 1000 basic words with the vectors. However other
architectures that do not use word vectors are possible, so this
is not definitive.

44 bytes/float ∗ 3 floats/vector ∗ 3 vectors/molecule =
36 bytes/molecule. The simulation will either require keeping
two states, or keeping a state and the state delta, so this dou-
bles the ram. So 10∗10∗10∗2∗36 = 72000 which is more than
64 KiB. For reference, a silicon atom is about 0.2 nanometers,
transistors currently are on the order of 5 nanometers, so simu-
lating a transistor at the atomic level could require simulating
a cube of 25∗25∗25 = 15625 atoms, and simulating the quan-
tum effects needed to determine the electronic band structure
is more complicated than a simple molecular simulation.

5https://opencores.org/projects/p16c5x and processed
with cat *.v | sed ’s/.*//’ | uniq | wc -c to remove comments
and redundant lines. Note that memory representation and
Verilog source code can be different.

puter and does not include features like multiplica-
tion. A full hardware description would also need
to describe how to make the hardware like registers
and logic functions, as well as wire routing informa-
tion and so would be significantly larger. In addi-
tion, to run a computer also requires energy and mat-
ter (otherwise, the computer will still be dependent
on humans), which will require more parts.6 Dig-
ital parts are made from analog components, and
analog components need to be simulated with a suf-
ficiently accurate physical model.7 Fitting simula-
tions into 64 KiB requires reducing the number of el-
ements in a molecular simulation or a finite element
simulation, carefully choosing the provided param-
eters to fit what is needed, and getting this wrong
results in faulty simulations. Simulating an indepen-
dence gaining computer would likely require creating
small memory models of all necessary components,
and having enough room left over to design the rest
of the computational and support equipment. From
this, we see that holding the design of even a very sim-
ple computer and support components would require
compression and other tricks to work in 64 KiB. An
AI project is unlikely to have the needed electronic
component data, and very unlikely to be able to de-
sign the needed components from scratch in 64 KiB,
so this method of AGI independence gaining also ap-
pears to be practically impossible in 64 KiB.

So a 64 KiB computer can do neither fluent lan-
guage nor complicated simulations. Note that this is
not an exact calculation (64.5 KiB for example is also
limited), nor is this a proof.

There are several clarifications that need to be
made about this 64 KiB limit. Networking together
multiple 64 KiB computers would allow the memory
space to be increased, which could allow AGI to be
done on the combined computers by effectively cre-
ating a computer with larger memory space. Even
without an intentional network, there can be side
channels that transmit and receive data, such as with
radio waves, so fully enforcing the limit requires pre-
venting all networking. If time for computation is
ignored (as it is for this paper’s definition of indepen-
dence gaining AGI) it does not matter if the storage
is RAM, floppy drive, hard drive or flash drive; these
all increase capabilities. Register or vector storage
on the CPU needs to be counted as well, however,

6Note that without fluent language, obtaining the parts
from humans would likely be very difficult.

7While many simulations can be approximated with less
memory, this usually requires having some method to check
that the approximation is correct. These include having ex-
perimental data to benchmark against, or being able to run a
mesh convergence study, which requires being able to run finer
meshes then needed.
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for CPUs with less than 1 KiB of registers, this will
not change the analysis; 65 KiB is still unlikely to be
able to do fluent language nor complicated simula-
tions.

One type of IO likely can be allowed, which this pa-
per will refer to as manual W1|R1, which is IO that
can either be written once or read once,8 and reread-
ing or rewriting requires manual intervention. Early
computers often had punch card readers and writ-
ers.9 The workflow for writing would be punch cards
would come from the punch hopper and be written
to and then go to output stacks. Cards to be read
would come from a read hopper, and then be read
and then go to output stacks. Re-reading a punched
card would require manually moving the card from an
output stack to the read hopper. An example from
early home computers of manual W1|R1 was the use
of a tape player,10 and in order to read the tape, the
user would press play on the tape player, and to write
would need to press the record button, and to re-read
or rewrite would require rewinding and then pressing
the needed button. Since the output data cannot be
automatically reread in manual W1|R1, this makes
using this restricted type of IO impossible to use as
a way to extend usable memory without assistance
from the human operator or adding additional hard-
ware.

Write once, read many (WORM) media (such as
paper tape, punch cards, CD-R or DVD-R) or media
where there is manual work needed (such as origi-
nal cassette drives that required the user to manu-
ally switch from reading to recording or UV erasable
programmable read only memory (UV-EPROM)) are
significantly different than RAM because they can
only be written once without intervention. Only writ-
ing once is a significant limitation for most uses in
simulation or learning algorithms.11 In addition, if
the data cannot be overwritten at the bit level,12 the

8Note that most human interface devices such as keyboards
and displays are trivially manual W1|R1.

9For example, the IBM 1402 Card Read-Punch from the
1960s was a manual W1|R1.

10Such as with the Commodore 64.
11Substantially more write once/read many storage than

R/W storage is needed if a simulation step cannot be fit in
the R/W storage. For example, if a simulation needed 64 KiB
of data that was updated each timestep and there were a 1000
timesteps, then a computer with 64,000 KiB of WORM drive
could do a calculation even without having RAM to store an
individual timestep. We can roughly show how this would
work for 64 KiB limit of read/write storage with the approx-
imate formula S + W/m ≤ 64 KiB where S is the amount of
read/write storage, W is the amount of WORM space, and m
is a heuristic multiple approximately determined by how many
times the state will change in search or simulation. In short,
more WORM storage may be allowed than read/write storage.

12For example, on a paper tape using ASCII, a delete

data can be read back to see what computational data
was being stored, which allows retrospective forensic
analysis.

Note that the statement that an AGI restricted to
64 KiB of read and writable space is very unlikely to
be capable of gaining independence does not imply
that the code to create an independence gaining AGI
would require more than 64 KiB. It seems possible
that 64 KiB of binary RISC-V RV64GCV machine
language code (or similar computers with hardware
floating point) would be able to include a machine
learning training and running program,13 and a sim-
ple and less efficient14 simulation of Feynman’s classi-
cal physics formulation (Feynman et al., 1963, Vol. 2
Table 18-4). Alternatively, the program could fit a
mathematical representation of the standard model
and general relativity instead, and possibly the code
to simulate those equations in 64 KiB. So a small
program that is enough to get to a near AGI and a
basic understanding of the universe possibly could fit
in 64 KiB (or close to it) of code if run on a large
and fast enough computer. Note that if we want
to create a safe AGI, the code also would need to
have the ethics and know how to coexist with cur-
rent life, which would likely be substantially more
complicated;15 an AGI missing these would likely be
a very dangerous AGI. So 64 KiB might be enough to
store the binary code for a seed AGI program, how-
ever, running the program would require access to
more RAM and storage.

5 Nonlimiting Estimates
This section goes through several sample comparisons
to give an order of magnitude sense of scale, but
none of these provide hard bounds. These include
comparison to existing naturally evolved independent
life, symbolic AI and self-replicating automaton ex-
amples, and modern machine learning codes. These
can be compared to the 64 KiB limit estimated in the

(0b1111111) can overwrite other characters.
13A feed-forward multi-layer neural network with back-

propagation and stability improvements might be able to be fit
into 64 KiB of code and with sufficient parameters in additional
memory might be able to do the work of current transformer
models.

14By choosing simpler algorithms, the compiled code can be
smaller, but the run-time speed and run-time memory usage
will be worse.

15Is the energy being gathered being taken away from an
existing ecosystem? Are the atoms being used for construction
part of something living? What is life versus non-life? How can
I find sentient beings in the neighborhood and communicate
with them and understand their values? Those are some of the
types of questions that a safely coexisting AGI probably needs
to carefully and ethically answer before taking actions.
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previous section, and provide reference numbers that
suggest a higher limit.

The smallest known cell able to replicate indepen-
dently in nature is Pelagibacter ubique and has a
genome with 1,308,759 base pairs (Giovannoni et al.,
2005). The largest protein in it is an amino acid se-
quence of length 7317 (National Center for Biotech-
nology Information, 2024). Amino acids have be-
tween 10 and 27 atoms with an average of 19.2
(Foulquier and Ginestoux, 2001). Designing the se-
quence requires representing each atom, which if that
takes six single precision floating point numbers de-
signing the largest protein would take at least 3 MiB
of storage.16 As each protein is designed, the DNA
sequence to create it would need to be stored, so the
memory needed will be for the protein currently be-
ing designed, plus the DNA encoding all the proteins
already designed. So in addition, storing the genome
uncompressed (4 pairs per byte) would take another
300 KiB. To the extent that that P. ubique is the min-
imum viable independent organism, designing it gives
a lower memory limit of above 3 MiB of storage. Note
that this could be both an over estimate or an un-
derestimate. It is possible that substantially smaller
replicating organisms could be designed compared to
P. ubique which would lower the number of atoms
to simulate. Actual simulations of quantum electro-
dynamics are usually more memory intensive than
six floating point numbers per atom, and the atoms
that the proteins are interacting with also need to be
simulated, so substantially more memory might be
required than we hypothetically assigned above. Ad-
ditionally, the design of an independent AGI might
be done at the component level, not at the atomic
level, so the relevant memory use would depend on
the number of different components, their complex-
ity, and how the components’ use is described. So
if an AGI designs an independently existing machine
the design calculations need to be very efficient mem-
ory wise, and in some sense simpler than P. ubique
since these considerations point to needing more than
3 MiB for designing P. ubique.

The SHRDLU program was a 1970s natural-
language computer program that was only capable
of discussing stacking blocks and had a vocabulary
of approximately 500 words17, and it used approx-
imately 450 KiB (100 to 140 K of 36 bit words

16One simple representation of the atoms would be to store
3 floats for the position vector and 3 for the velocity vector.
This ignores storing information about the electron’s quantum
state. For the 6 floats per atom the calculation is 4 bytes/float∗
6 floats/atom ∗ 7317 amino acids
∗ 19.2 atoms/amino acids ∗ 1/10242MiB/byte ≈ 3.215 MiB

17estimated from counting the DEFS in the file dictio in the
source code for SHRDLU

from the README in Winograd (1972)). Using the
SHRDLU program with 500 words per 450 KiB and
assuming that the vocabulary is expanded to 5000
words to be more fluent in more topics in English
and assuming this is linear on the number of under-
stood words gives an estimate of 4500 KiB of storage
needed for fluent English. These are likely false as-
sumptions however. This could be an overestimate if
language understanding can be done more efficiently
than SHRDLU (such as by more efficient coding, by
better than linear scaling (possible if adding new con-
cepts are less work because existing concepts can be
leveraged), or fixed costs (such as operating system
overhead and common parts such as parsing) become
a smaller percentage of the storage needs). Con-
versely, this can be an underestimate if the concepts
in English that SHRDLU interpreted are easier than
typical English concepts (which seems likely since the
stacking blocks are a physically simple system), and
5000 words is more along the lines of basic proficiency
than fluent English, so more vocabulary would be
needed. Assuming that improving SHRDLU’s effi-
ciency of word representation is reasonably optimal,
and that increasing the vocabulary and concepts un-
derstood will be linear or more, this suggests a lower-
end estimate. This is a back-of-the-envelope calcula-
tion deliberately designed to be on the lower end, so
an AGI would very likely need much more than ap-
proximately 4.5 MiB to be fluent in English.

Another way to get an estimate of the size of data
needed for a self-replicating computer is to examine
self-replicating computers in simulated environments
such as cellular automaton environments. There is a
minimum size as stated in a paper by Burks and von
Neumann (1987):

There is a minimum number of parts be-
low which complication is degenerative, in
the sense that if one automaton makes an-
other, the second is less complex than the
first, but above which it is possible for an
automation to construct other automata of
equal or higher complexity.

In cellular automaton environments, self-
replicating computers have been created. An
early example is John von Neumann’s universal con-
structor (von Neumann and Burks, 1966). Devore’s
self-reproducing automaton is smaller and ran in
a world where each cell had 8 possible states and
fit into a rectangle of 259 cells by 366 cells (94,794
cells) (Koza, 1994) and so would require about 36
KiB of information uncompressed.18 Devore’s self-
reproducing automaton was also computationally

188 states can be described in 3 bits, so 94794 ∗ (3/8) =
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universal (Turing complete). Note that this does
not prove that designing a self-replicating computer
requires 36 KiB since there is no proof that De-
vore’s automaton is the minimum.19 In addition, a
self-replicating computer in standard model physics
would likely be significantly more complicated,
because of requirements such as obtaining energy
and the needed atoms, that are present in real
world chemistry but are absent in the simple cellular
automaton simulations. Creating a self-replicating
computer in the real world is both difficult and
dangerous, so these toy models are useful for theory,
and further research on them potentially provides a
possibility of establishing hard limits. If it can be
theoretically shown that there is a minimum number
of parts for computationally universal automata,
this shows that physical computationally universal
automata must be at least that complexity since
a cellular automaton universal constructor will be
simpler than a real-world universal constructor.
However, present uncertainties limit the information
current cellular automaton theory provides for this
paper’s estimates for limits for independence-gaining
AGIs.

The AlphaFold program (Jumper et al., 2021;
Abramson et al., 2024), predicts protein structure,
and since predicting protein structure is a key com-
ponent for designing biological hardware, this can be
used for estimating the computation power needed for
that. An example computer used to run AlphaFold2
was an Intel Xeon W9-3495X with 56 cores, 512 GB
of RAM and 1.92 TB of SSD storage (Exxact Corpo-
ration, 2023) which shows that AlphaFold 2 can run
on a 2.3 TFLOP/S computer with 0.5 TiB of RAM.
Since AlphaFold uses a trained neural network the
calculation’s prediction can be incorrect and predict-
ing protein structure is only part of what is needed for
designing biological hardware, so information about
AlphaFold does not prove this computer is sufficient
for independence gaining. This does provide an ex-
ample showing current state of the art computations
for biological molecules are substantially above the
low end memory requirements estimate for designing
P. ubique earlier in this section.

For LLM models, the compute used for training
them is on the order 1020 floating point operations
and GiB to TiB of memory. The phi-1 small model
(Gunasekar et al., 2023) used 350M parameters and
135 hours of training on an A100 GPU or about

35547.75 and it is worth noting that there is repetition so com-
pression is possible.

19If just replication is needed, and not computational univer-
sality, very small models, such as Langton Loops are possible
(Langton, 1984).

1.3 GiB of RAM and 1.5 ∗ 1020 floating point op-
erations.20 The LaMDA model (Thoppilan et al.,
2022, Section 10) used 3.55∗1023 floating point oper-
ations for training a model 137B with parameters or
about 0.5 TiB of RAM.21 Once an LLM is trained,
the LLM can be run on typical current computers
with sufficient RAM. For example, the gpt-oss-20b
model (OpenAI et al., 2025) can be quantized and run
on computers with 16 GiB of RAM (Hugging Face,
2025). LLMs were originally designed for next token
prediction and language translation (as opposed to
reasoning or efficient model representation), and yet
often can intelligently answer questions. Assuming
that different and more efficient algorithms are possi-
ble, the LLM runtime requirements suggest that typ-
ical 2025 laptop and desktop computers with 10s of
GiB of RAM and 500 GFLOP/S processing might be
capable of supporting an independence gaining AGI.

This section has been a brief look at examples for
an order of magnitude sense of scale. Further research
by subject matter experts on each of these examples
could improve the accuracy and precision of the esti-
mates. Primarily from the consideration of P. ubique
and SHRDLU, it seems likely that a computer with 2
MiB of memory and storage22 would be unlikely to be
able to run an independence gaining AGI.23 If instead
we work down from examination of the state of the
art algorithms, RAM and storage limits of 1 GiB and
processing power limit of 500 GFLOP/S would pre-
vent many current AI and simulation programs such
as LLM training and AlphaFold from running. It
is possible lower resource algorithms for an indepen-
dence gaining AGI exist (and that the lower 2 MiB
or 64 KiB limit would be needed to be used to pre-
vent them) and it is possible that an independence
gaining AGI would need more than 1 GiB and 500

20A Nvidia-A100 GPU has a theoretical computing ability
of 312 TFLOP/S (NVIDIA Corporation, 2021) so 135 hours ∗
312 TFLOP/S ∗ 3600 seconds/hours = 151632000 TFLOP =
1.51632∗1020 FLOP. Note that this means that a computer ca-
pable of a processing rate of 500 GFLOP/S could have trained
the phi-1 small model in under 10 years of total processing:
1.51632∗1020 FLOP/(10 years∗365 days/year∗24 hours/day∗
3600 seconds/hour) ≈ 4.808 ∗ 1011 FLOP/S As a quick com-
parison, the 2020 Apple M1 chip used in Mac laptops is ca-
pable of 2600 GFLOP/S (which may not be reachable due to
bandwidth limitations for LLM training).

21137B parameters or 137 ∗ 109 parameters ∗
4 bytes/parameter/10244 byte/TiB = 0.4984 TiB with
the note that this assumes 32 bit floats for the parameters
and ignores other storage needed for training.

22This is taking the minimum of 3 MiB and 4.5 MiB and
rounding down to the nearest power of two

23A 1976 Cray I computer had 166 MFLOP/S and 32 MiB
of RAM (Patterson and Hennessy, 1998, pg. 43), so computers
with more than this amount of RAM have existed for a long
time and so at minimum creating an independence gaining AGI
on them is hard.
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GFLOP/S.

6 Superintelligence Limits?
This section will discuss determining super-
intelligence limits with this paper’s working
definition of super-intelligence (ASI). Unlike the
independence-gaining AGI definition, the ASI defini-
tion considers if the ASI can think faster than many
humans working together on STEM tasks. For some
STEM tasks, even 1950s computers are vastly faster
than multiple people working together, however,
for other scientific and engineering tasks current
computers with current software are not capable of
matching human performance. This section will also
examine the differences between human brains and
computer elements, and discuss full human brain
emulation, which can provide an upper limit on the
needed computing power.

One method of estimating the amount of com-
pute for ASI is to consider the amount of compute
needed to simulate human brains at the neuron and
synapse level. The amount of computational power
to simulate the approximately 100 billion neurons
(and roughly 10,000 synapses per neuron) in a hu-
man brain is estimated to be approximately 1 exa
FLOP/S (1018 FLOP/S) (Chen et al., 2019).24 To
the extent this number is accurate, this provides
an upper limit for both AGI and superintelligence.
Since a human is a general intelligence, then 1 exa
FLOP of performance with enough memory for the
all synapses (approximately 1 petabyte) would be suf-
ficient for AGI. Similarly, a superintelligence could
be created by simulating 10,000 humans, so multi-
ply the AGI limits by 10,000 to get 1022 FLOP/S
and 1019 bytes.25 Full human brain simulations have
not been done, so the previous values are estimates.
For Caenorhabditis elegans, which has 302 neurons
in the adult hermaphrodite, simulations have been
created that replicate the behavior of the organism.
The BAAIWorm simulation modeled the 136 neurons
of the sensory and locomotion functions, the muscle
cells and the environment, and replicated behavior
such as the organism swimming towards an attrac-

24A back-of-the-envelope example calculation of this type is
(Kurzweil, 1999, pg 103): “With 100 trillion connections, each
computing at 200 calculations per second, we get 20 million
billion calculations per second. This is a conservatively high
estimate; other estimates are lower by one to three orders of
magnitude.” (or 2 ∗ 1016)

25Computers can do tricks like copy the full brain quickly,
and then start running in parallel that humans cannot do, so
10,000 computer simulations of a human brain could likely do
more productive thinking on a specific problem than a collec-
tion of 10,000 humans.

tor. It should be noted that the compartmental neu-
ral network models used by the BAAIWorm simula-
tion of C. elegans (Zhao et al., 2024) likely used sub-
stantially more computation and memory per neuron
since they simulate each segment of the dendrite. A
neuron level simulation estimate gives a rough order
of magnitude maximum estimate of what amount of
compute is required for human level thinking and be-
yond human level thinking, but this is not an exact
estimate.

This, however, is likely to be an overestimate of the
computing power needed for doing a specific intellec-
tual task because of the different characteristics of
computers versus human brains.26 Signals in human
neurons travel at about 60 m/s (Stetson et al., 1992)
and signal transitions take about 1 millisecond (Kan-
del et al., 2000, pg. 21). Signals in computers travel
at near light speed (2 × 108 m/s) and signal transi-
tions happen on the order of 109 times per second.
The billions of neurons in human brains often allow
the brain to use parallelization when thinking, but
the faster signal transition and propagation speed of
electronics give significant advantages for algorithms
that do not parallelize well.27

As an example of the difference, consider the 1964
CDC 6600 supercomputer. It could calculate at a
rate of 2 MFLOP/S under optimal conditions28. 2
MFLOP/S of computation, even in the case where
the algorithm is parallelizable, is well beyond the ca-
pability of 1000 humans (2000 floating-point calcu-
lations per second is beyond a single human). For
many tasks, including visual tasks and muscle con-
trol, humans perform much of their thinking subcon-
sciously. However, for some STEM tasks, including
arithmetic, humans perform them consciously and so
can only perform one at a time. For a certain class
of algorithms where a hundred logical or arithmetic
operations can do what a human mind can do in a
second, a 100 kFLOP/S computer29 is already at su-
perhuman speeds. This is a rough analogy and would
not apply to all types of human thinking, but for

26As Byrnes (2023) noted, performing AGI by simulating
a human brain’s neurons is similar to multiplying a number
by “do[ing] a transistor-by-transistor simulation of a pocket
calculator microcontroller chip, which in turn is multiplying
the numbers.”

27This factor of a million difference in both transmission
speed and effective clock speed means that for many cases,
the computer can do in an hour something that would take a
human over a century.

28The CDC 6600 had two multiply units that could multiply
a 60 bit floating-point number in 1000 nanoseconds and one
floating point add unit that could add a floating point number
in 400 nanoseconds (Thornton, 1970, pp. 77 and 88)

29100 kFLOP/S = 100 FLOP/S × 1000, analogous to 100
operations per second × 1000 humans. This does assume the
algorithm parallelizes well.
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some short (on the order of 10 millisecond) conscious
STEM thoughts each thought could be approximated
by a small number of computer logical or arithmetic
instructions. Proving that all STEM tasks necessary
to gain independence require thinking where humans
are efficient at thinking would be necessary to prove
that 100 kFLOP/S is not ASI. This likely would be
difficult to prove, but it does seem unlikely. On the
other hand, proving that all STEM tasks necessary to
gain independence are not possible at 100 kFLOP/S
would also be difficult to prove but seems more likely.
So 100 kFLOP/S may not be the absolute lower limit
for independence gaining ASI, but it is likely to be
roughly in the right order of magnitude. It is possible
to argue that the bounds might go lower or higher,
but this gives rough bounds between 105 FLOP/S
and 1022 FLOP/S for the computational speed re-
quired for independence gaining ASI.

Besides human intelligence, other animals use
much smaller brains to interact with the world. The
brain of a fruit fly has 139,255 neurons connected
by 5 × 107 chemical synapses (Dorkenwald et al.,
2024). As an approximation, scaling by the num-
ber of synapses would give a simulation computa-
tional requirement of 50 GFLOP/S.30 This amount
of computing power is easily available today, for ex-
ample, a 2010 Intel Core i7-970 can do over 70 giga
FLOP/S with a single processor (Intel Corporation,
2024). The fruit fly brain data suggest that it is likely
that interacting with the physical world can be done
with much less processing power than humans use,
and as mentioned before, simulation of a brain will
likely be substantially less efficient than rewriting the
algorithms for use on computers.

Besides logic and arithmetic, a likely key factor for
many STEM tasks is searching through possibilities.
One useful analogue for this is the tree search used
in chess programs. An Intel 5160 processor (2 cores,
3.00 GHz) with a benchmarked rate of 2 GFLOP/S
of computation (PassMark Software, 2025) was used
to defeat chess grandmasters (ChessBase, 2006). Hu-
man brains are low speed but highly parallel, so the
methods that human use to consider chess moves will
be different from computer algorithms, but this anal-
ogy does suggest that significantly more compute will
be needed to match human learning and subsequent
search capabilities than is needed to match human
arithmetic abilities. At least for present day search
algorithms, since this is for a single human, this sug-
gests that if independence gaining ASIs need signifi-

30The simulation requirement used in this section for a single
synapse in a human brain is roughly 1000 FLOP/S so the
5×107 synapses could be simulated by 5×1010 FLOP/S (Chen
et al., 2019).

cant search, they likely need computational abilities
at least in the GFLOP/S range.

This section has considered human brains and at-
tempted to provide an estimate of computational
speed necessary for independence gaining ASI. Unfor-
tunately, there are significant limitations for all the
examples and comparisons used in this section. As
well, advances in algorithms can decrease the amount
of computation needed for a given task. This sec-
tion’s rough bounds for independence gaining ASI
of between 105 FLOP/S and 1022 FLOP/S for the
computational speed required seem likely to include
the true limit, but a case can be made for lower and
higher numbers.

Table 1: Summary of results, note that all of these
are approximate, and see text for important caveats.

Limit Type Storage Speed
Lower Estimates 64 KiB AGI 10 kFLOP/S ASI
Likely 2 MiB AGI 1 GFLOP/S ASI
SotA Proxies 1 GiB 500 GFLOP/S
Upper ASI 1019 bytes 1022 FLOP/S

7 Conclusions
An independence gaining AGI can made practically
impossible by restricting all computers to less than
64 KiB of R/W storage without networking. Com-
puter simulations and other uses of computers are
very useful for solving other problems of humanity;
alternatively, computers below the AGI limit can be
used without restrictions, and only run safe software
on computers above this limit. 64 KiB of R/W stor-
age is a useful amount computer power and systems
like the Commodore 6431, the Nintendo Entertain-
ment System and Arduino UNO all had 64 KiB or
less of R/W storage and these had sales figures in
the millions (Amos, 2021; Arduino Team, 2021). This
limit is however substantially below almost all mod-
ern computing systems, with the notable exceptions
of low end embedded systems32 and retro comput-
ing. This paper has shown that it would be possible
to allow practically any software, and still prevent in-
dependence gaining AGI, so long as there are strict
hardware limits instead.

31Note that a Commodore 64 did not have a built in disk
drive. Adding an external disk drive would result in having
more than 64 KiB of R/W storage, but a Commodore 64 could
be used either stand-alone or with a manually operated cas-
sette tape drive.

32For example, the PIC16F13113 chip was introduced in
2023 and has 256 bytes of RAM and 3.5 KiB of Flash (Mi-
crochip Technology Inc., 2024).
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Determining the threshold computational speed
limit for a superintelligent AGI is harder and this
paper was not able to determine a good lower limit.
Another way to prevent superintelligent AGI is to
limit memory at the regular AGI limit.

Note that these are sufficient limits, but they may
be far lower than the unknown necessary limits. As
seen in Table 1 there is a large range between the
lower estimated limits and the upper ASI limits in
which the actual limits may exist. Further research
on this would be needed before these are useful for
setting policy.

8 Speculation and Future Work
Raising the limits from 64 KiB and 10 kFLOP/S
seems possible, and would be useful future research.
2 MiB and 1 GFLOP/S probably could be demon-
strated for the AGI and superintelligence limits, and
would allow more useful unrestricted computers. Re-
search on if and what kind of networking can be al-
lowed would be useful. Research how much Read
only, Write only, and Write once/Read many storage
can be allowed would be useful.

The limits could be used in at least two ways, one
would be to make it an absolute limit and the other
to allow computers above the limit, but restrict what
software is run on them.

The 64 KiB limit would be very restrictive. If there
is no exception for manual W|R or WORM storage,
these would not even allow many of the uses that
computers were used for in the 1950s.

A 512 KiB computer with 1.5 MiB of read/write
storage (including some that is detachable that could
be carried to other computers) could be used for
many things we currently use computers for includ-
ing GUI word processing, spreadsheets, a C compiler,
and MicroPython programming.33 This level of com-
puter would however be noticeably less capable than
current computers at most tasks.

Limiting to below 1 GiB and 500 GFLOP/S would
give computers that would be useful for most things
we currently do with computers, with exceptions like
high end games, simulations, and of course, many AI
techniques. Note that limits to prevent using net-
working to exceed the limits would probably be quite
noticeable at times to people used to current com-
puters and current networks.

Using high powered computers for AI research is in
some sense like using a 25 kVolt AC for experiments

33This is similar to circa 1985 desktop computers such as the
Macintosh 512K or an Atari 520ST which had 800 KiB or 720
KiB floppy drives as the read/write storage.

before fully understanding electricity. It would be
much safer to experiment with 3 Volt DC. We need
to have a better idea what computational amounts
are low enough to be safe and which can lead to ac-
cidental AGI creation.

Lastly, there is usefulness in restrictions and reg-
ulations even if they are far above the provable lim-
its, since the danger of accidentally creating a non-
aligned independence gaining AGI increases as com-
putational power goes up.34

This paper has been improved thanks to Elizabeth
Cogliati as well as ChatGPT providing “analysis,
critique, and identification of flaws or gaps, with-
out suggesting any specific fixes unless asked.” (Pre-
ChatGPT versions: April 17, 2025 and before are
available on researchgate.net)

These are my own opinions and not those of my
employer. This document may be distributed verbatim
in any media or under the Creative Commons BY-SA
4.0 license.
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