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Abstract
Existing discussion of AGI safety have primarily
involved preventing dangerous programs from run-
ning on computers. This article focuses instead on
preventing independence gaining AGI from running
based on hardware memory and floating point oper-
ations per second limits. We show that a 64 KiB
memory and storage limit can be used to prevent an
independence gaining AGI from running and show
that likely higher limits are possible. These limits
are substantially below what is required for current
state of the art AI, but the state of the art is expected
to advance, so future limits are useful for longer term
planning.

1 Introduction
Stuart Russell proposed in an interview (Chia and
Cianciolo, 2023) “we need to ensure that the hard-
ware and the operating system won’t run anything
unless it knows that it’s safe.” For sufficiently pow-
erful computers, this requires restricting which soft-
ware runs on the computer. However, this paper will
show that if the computational space and speed of
the hardware is sufficiently limited, the software can
be unrestricted. The threat model is that either in-
tentionally or accidentally a human will create an AI
program that is sufficiently intelligent to gain inde-
pendence, such as by creating a self replicating com-
puter. Note that some AI techniques and algorithms
are well understood and are not likely to be a prob-
lem even when run on powerful computers including
minimax search with a fixed evaluation function and
a climate general circulation model. Techniques or
simulations that can simulate NAND gates, flip-flops
and connections could result in more unexpected be-
havior. A purely feed-forward neural network that is
not retrained for example cannot emulate a flip-flop,
but a recurrent neural network can emulate a flip-flop
by storing the state needed in the network.
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2 Definitions

For this paper, the definition of Artificial General In-
telligence (AGI) is artificial intelligence that is capa-
ble of performing any scientific, technological, engi-
neering or mathematical (STEM) task that a human
could do that is needed to gain independence. Ar-
tificial super-intelligence (ASI) is harder to define,
but a working definition is that a super-intelligence
AGI would be capable of out thinking an entire uni-
versity or research laboratory for any STEM task
necessary to gain independence. For this definition,
the university or research laboratory does not have
electronic computing hardware, otherwise the float-
ing point operations per second would be primarily
from the computers there. This definition would be
a university or research laboratory in roughly 1940
or before. The two reasons the “gain independence”
limitation is included is to prevent needing to simu-
late human brains, for which humans might have an
inherent advantage and “gain independence” is suffi-
cient to be dangerous if the AGI is not aligned with
human goals and ethics.

This paper is concerned with an AGI that is ca-
pable of achieving independence. There are three
basic ways that an AGI could use to achieve inde-
pendence. The three are convincing humans to help,
creating hardware in the environment, or expanding
into other computer infrastructure. Expanding into
other computer infrastructure is already something
that has been done by computer viruses for decades,
and may lead to the AGI gaining other resources
which can be used for one of the other methods to
achieve independence. Computer virus can be writ-
ten in 10s to 100s of instructions, so preventing this is
the computer security problem of securing potential
targets and in many cases can be solved by shutting
down the infected computers, and will not be dis-
cussed further.

Convincing humans probably requires at least some
level of fluency in language and some understanding
of how to motivate or negotiate with humans. Creat-
ing hardware in the environment requires both some
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knowledge of the environment and some ability to
simulate it. The method this paper uses to demon-
strate that an AGI can’t gain independence is to show
that the available computing power does not allow
fluent language and does not allow sufficient simula-
tions.

3 AGI Limits
Having hardware limits for AGI and superintelli-
gent AGI would be useful because these would al-
low safer experimenting by running the experiment
on computer hardware below the limit. In addition,
this would allow computer hardware below the limit
to avoid regulations needed for safe computer us-
age. Note that the AGI definition does not include
any speed or timing considerations, only the super-
intelligence definition includes speed.

It is worth noting that the Halting Problem and
Rice’s theorem are for Turing machines with an in-
finite tape; this paper is dealing with machines with
finite space (memory + disk storage), so there are
facts that are provable here that would not be prov-
able with a Turing machine.

A literature review did not find many existing esti-
mates for a limit below which an AGI is not possible.
One estimate is that a human level AGI could be done
on an Intel 286 if the programmer is a superintelligent
AGI or a “home computer from 1995” (which roughly
corresponds to a 90 MHz Pentium) if the program-
mer is a human (Yudkowsky, 2022) but no method
for how this estimate was calculated is provided.

4 Limiting Estimates
This section will show that an AGI restricted to 64
KiB of read and writable space (RAM and re-writable
drives) would not be capable of gaining indepen-
dence.

Fluent English language understanding and cre-
ation is likely highly to be impossible in 64 KiB. A
typical human vocabulary of 20,000 words would not
fit in this amount of space without compression1 and
adding definitions would increase the size even more
so it would not be possible to fit a program that used
unrestricted language fluently. A 64 KiB computer is
unlikely to be able to simulate enough of the world to
design hardware to gain independence. For example,
a molecular simulation that used 4 bytes per float,

1https://www.mit.edu/~ecprice/wordlist.10000 for ex-
ample is 75880 bytes. As well, word vectors usually have vec-
tor length of at least 100 (Pennington et al., 2014), so 64 KiB
would not even fit a 1000 basic words with the vectors.

3 vectors of 3 floats, and a beginning and end state
could not fit a simulation of a 10x10x10 cube in 64
KiB.2 So a 64 KiB computer can do neither fluent
language nor complicated simulations.

There are several clarifications that need to be
made about this 64 KiB limit. Networking together
multiple 64 KiB computers would allow the memory
space to be increased, which could allow AGI to be
done on the combined computers. Even without an
intentional network, there can be side channels that
transmit and receive data, such as with radio waves.
If time for computation is ignored (as it is for this
paper’s definition of independence gaining AGI) it
does not matter if the storage is RAM, floppy drive,
hard drive or flash drive; these all increase capabili-
ties. Register or vector storage on the CPU needs to
be counted as well.

Write once, read many (WORM) media (such as
paper tape, punch cards, CD-R or DVD-R) or media
where there is manual work needed (such as origi-
nal cassette drives that required the user to manu-
ally switch from reading to recording or UV erasable
programmable read only memory (UV-EPROM)) are
significantly different than RAM because of they can
only be written once without intervention. Only writ-
ing once is a significant limitation for most uses in
simulation or learning algorithms.3 In addition, if the
data cannot be overwritten at the bit level,4 the data
can be read back to see what computational data was
being stored.

It seems likely that 64 KiB of RISC-V RV64GCV
machine language code would be more than sufficient
to include a transformer model training and running
program, and a simple simulation of Feynman’s clas-
sical physics formulation (Feynman et al., 1963, Vol. 2
Table 18-4). Alternatively, the program probably
could fit the standard model and general relativity
instead. It seems likely that a small program could
easily include enough to get to a near AGI and a ba-

24 bytes/float ∗ 3 floats/vector ∗ 3 vectors/molecule =
36 bytes/molecule. The simulation will either require keep-
ing two states, or keeping a state and the state delta, so this
doubles the ram. So 10 ∗ 10 ∗ 10 ∗ 2 ∗ 36 = 72000 which is more
than 64 KiB.

3Substantially more write once/read many storage than
R/W storage is needed if a simulation step cannot be fit in
the R/W storage. For example, if a simulation needed 64 KiB
of data that was updated each timestep and there were a 1000
timesteps, then a computer with 64,000 KiB of WORM drive
could do a calculation even without having RAM to store an
individual timestep. So if the 64 KiB limit of read/write stor-
age could be changed to S + W/m ≤ 64 KiB where S is the
amount of read/write storage, W is the amount of WORM
space, and m is multiple determined by how many times the
state will changed in search or simulation.

4For example, on a paper tape using ASCII, a delete
(0b1111111) can overwrite other characters.
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sic understanding of the universe in 64 KiB of code
if run on a large and fast enough computer. So 64
KiB would not be enough to run an AGI, but might
be enough to store the code to run an AGI.

5 Nonlimiting Estimates
The 64 KiB limit may be significantly lower than
needed to prevent an AGI. This section includes es-
timates that do not provide a limit.

A 1976 Cray I computer had 166 MFLOP/S and 32
MiB of RAM (Patterson and Hennessy, 1998, pg. 43),
to give perspective on how long MFLOP and MiB
sized computers have existed.

The smallest known cell able to replicate indepen-
dently in nature is Pelagibacter ubique and has a
genome with 1,308,759 base pairs (Giovannoni et al.,
2005). The largest protein in it is a amino acid se-
quence of length 7317 (National Center for Biotech-
nology Information, 2024). Amino acids have be-
tween 10 and 27 atoms with an average of 19.2
(Foulquier and Ginestoux, 2001). Designing the se-
quence requires representing each atom, which if that
takes six single precision floating point numbers de-
signing the largest protein would take at least 3 MiB
of storage.5 In addition storing the genome uncom-
pressed (4 pairs per byte) would take another 300
KiB. To the extent that that P. ubique is the mini-
mum viable independent organism, designing it gives
a lower memory limit of above 3 MiB of storage. Note
that this could be both an over estimate or an un-
derestimate. It is possible that substantially smaller
replicating organisms could be designed compared to
P. ubique. Actual simulations of quantum electrody-
namics are usually more memory intensive than six
floating point numbers per atom, more than we hy-
pothetically assigned above.

The SHRDLU program was a 1970s natural-
language computer program that was only capable
of discussing stacking blocks and had a vocabulary
of approximately 500 words6, and it used approxi-
mately 450 KiB (100 to 140 K of 36 bit words from the
README in Winograd (1972)). Using the SHRDLU
program with 500 words per 450 KiBs and assuming
that the vocabulary is expanded to 5000 words to be
more fluent in more topics in English and assuming
this is linear on the number of understood words gives
an estimate of 4500 KiB of storage needed for fluent
English. Note that this could be an overestimate if
language understanding can be done more efficiently

54 bytes/float ∗ 6 floats/atom ∗ 7317 amino acids
∗ 19.2 atoms/amino acids ∗ 1/10242MiB/byte ≈ 3.215 MiB

6estimated from counting the DEFS in the file dictio in the
source code for SHRDLU

than SHRDLU, and an underestimate if the concepts
in English that SHRDLU interpreted are easier than
typical English concepts.

Another way to get an estimate of the size of data
needed for a self replicating computer is to examine
self-replicating computers in simulated environments
such as cellular automaton environments. There is a
minimum size as stated in a paper by Burks and von
Neumann (1987):

there is a minimum number of parts below
which complication is degenerative, in the
sense that if one automation makes another,
the second is less complex than the first, but
above which it is possible for an automa-
tion to construct other automata of equal
or higher complexity.

In cellular automaton environments, self-
replicating computers have been created (von Neu-
mann and Burks, 1966). Devore’s self-reproducing
automaton ran in a world where each cell had 8
possible states and fit into a rectangle of 259 cells by
366 cells (94,794 cells) (Koza, 1994) and so would
require about 36 KiBs of information.7 Note that
this does not prove that designing a self-replicating
computer requires 36 KiB since there is no proof that
Devore’s automaton is the minimum. In addition, a
self-replicating computer in standard model physics
would likely be significantly more complicated,
because of requirements such as obtaining energy
and obtaining the needed atoms, that are absent in
cellular automaton simulations.

The AlphaFold program (Jumper et al., 2021;
Abramson et al., 2024), predicts protein structure,
and can be used for estimating the computation
power needed for designing biological hardware. The
AlphaFold2 program could run on a Intel Xeon W9-
3495X with 56 cores, 512 GB of RAM and 1.92 TB of
SSD storage (Exxact Corporation, 2023) which shows
that AlphaFold 2 can run on a 2.3 TFLOP/S com-
puter with 0.5 TiB of RAM. Since AlphaFold uses
a trained neural network the calculation can create
incorrect answers, so information about it does not
prove this computer is sufficient for independence
gaining.

For LLM models, the compute used for training
them are on the order 1020 floating point operations
and GiB to TiB of memory. The phi-1 small model
(Gunasekar et al., 2023) used 350M parameters and
135 hours of training on an A100 GPU or about 1.3

78 states can be described in 3 bits, so 94794*(3/8) =
35547.75
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GiB of RAM and 1.5∗1020 floating point operations.8
The LaMDA model (Thoppilan et al., 2022, Section
10) used 3.55∗1023 floating point operations for train-
ing a 137B parameters model or about 0.5 TiB of
RAM.9

From these considerations, it seems likely that a
limit of 2 MiB (rounded down to the nearest power
of two) would be unlikely to be able to run an inde-
pendence gaining AGI. From the examination of the
state of the art, current algorithms that approximate
what would be needed for gaining independence need
a minimum storage of 1 GiB and a minimum compute
of 500 GFLOP/S.

6 Superintelligence Limits?
The amount of computational power to simulate
the approximately 100 billion neurons (and roughly
10,000 synapses per neuron) in a human brain is es-
timated to be approximately 1 exa FLOP/S (1018
FLOP/S) (Chen et al., 2019). This provides an up-
per limit for both AGI and superintelligence. Since
a human is a general intelligence, then 1 exa FLOP
of performance with enough memory for the all the
synapses (approximately 1 petabyte) would be suf-
ficient. Similarly, a superintelligence could be cre-
ated by simulating 10,000 humans, so multiply the
AGI limits by 10,000 to get 1022 FLOP/S and 1019

bytes. This, however, is likely to be a overesti-
mate of the computing power needed because of the
different characteristics of computers versus human
brains. Signals in human neurons travel at about
60 m/s (Stetson et al., 1992) and signal transitions
take about 1 millisecond (Kandel et al., 2000, pg. 21).
Signals in computers travel at near light speed (2.0e8
m/s) and signal transitions happen on the order of
109 times per second. The billions of neurons in hu-
man brains often allow the brain to use parallelization
when thinking, but the faster signal transition and
propagation speed of electronics gives significant ad-
vantages for algorithms that do not parallelize well.10

Estimating the computing power needed to be a su-

8A Nvidia-A100 GPU has a theoretical computing ability
of 312 TFLOP/S (NVIDIA Corporation, 2021) so 135 hours ∗
312 TFLOP/S ∗ 3600 seconds/hours = 151632000 TFLOP =
1.51632 ∗ 1020 FLOP. Note that this means that a computer
capable of 500 GFLOP/S could have trained the phi-1 small
model in under 10 years: 1.51632 ∗ 1020 FLOP/(10 years ∗
365 days/year ∗ 24 hours/day ∗ 3600 seconds/hour) ≈ 4.808 ∗
1011 FLOP/S

9137B parameters or 137 ∗ 109 parameters ∗
4 bytes/parameter/10244 byte/TiB = 0.4984 TiB

10This factor of a million difference means that for many
cases, the computer can do in an hour something that would
take a human over a century.

perintelligence from the other direction, a human can
at most do less than 100 floating point operations per
second, so 10,000 humans combined have less than
1 MFLOP for sufficiently parallelizable algorithms
and less than 100 FLOP/S for non-parallizable algo-
rithms. Considering that most scientific, technologi-
cal, engineering and mathematical tasks use floating
point calculations, to be conservative, the superintel-
ligence limit should be closer to 100 FLOP/S (1e2)
than 10 zetta FLOP/S (1e22). Proving that highly
parallelizable searching is needed for independence
gaining might be one way to prove that there is a
higher limit than 100 FLOP/S.

The brain of a fruit fly has 139,255 neurons con-
nected by 5 × 107 chemical synapses (Dorkenwald
et al., 2024). Scaling by the number of synapses
would give a simulation computational requirement
of 50 giga FLOP/S.11 This amount of computing
power is easily available today, for example, a 2010
Intel Core i7-970 can do over 70 giga FLOP/S with a
single processor (Intel Corporation, 2024). The infor-
mation about a fruit fly indicate that it is likely that
interaction with the physical world can be done with
much less processing power than humans use and also
indicate that 100 FLOP/S is likely an excessively low
limit.

A Intel 5160 processor (2 cores, 3.00 GHz) capable
of giga FLOP/S of computation was used to defeat
chess grandmasters (ChessBase, 2006) which does in-
dicate that giga FLOP/S of computing power might
be needed to match human brain search algorithms.
Note that none of these examples provides an amount
of computing power that can be used to demonstrated
that the lower limit for superintelligence is greater
than 100 FLOP/S. Using those computations as a
anchoring point, it does seem likely that 1 GFLOP/S
or more is required. Note that these are different by
a factor of 10 million, indicating the uncertainty of
these estimates.

Table 1: Summary of Results
Limit Type Storage Speed
Demonstrated 64 KiB AGI 100 FLOP/S ASI
Likely 2 MiB AGI 1 GFLOP/S ASI
SotA Proxies 1 GiB 500 GFLOP/S
Upper ASI 1019 bytes 1022 FLOP/S

11The simulation requirement for a single synapse in a human
brain is roughly 1000 FLOP/S so the 5 × 107 synapses could
be simulated by 5× 1010 FLOP/S (Chen et al., 2019).
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7 Conclusions
An independence gaining AGI can be prevented by
restricting all computers to less than 64 KiB of R/W
storage without networking. Computer simulations
and other uses of computers are very useful for solv-
ing other problems of humanity; alternatively, com-
puters below the AGI limit can be used without re-
strictions, and only run safe software on computers
above this limit. 64 KiB of R/W storage is a useful
amount computer power and systems like the Com-
modore 6412, the Nintendo Entertainment System
and Arduino UNO all had 64 KiB or less of R/W
storage and these had sales figures in the millions
(Amos, 2021; Arduino Team, 2021). This limit is
however substantially below almost all modern com-
puting systems, with the notable exceptions of low
end embedded systems13 and retro computing.

Determining the threshold computational speed
limit for a superintelligent AGI is harder and this pa-
per was not able to demonstrate a lower limit value
above 100 FLOP/S. If a higher FLOP/S limit cannot
be demonstrated, then another way to prevent super-
intelligent AGI is to limit memory at the regular AGI
limit.

Note that these are sufficient limits, but they may
be far lower than the unknown necessary limits. As
seen in Table 1 there is a large range between the
demonstrated limits and the upper ASI limits in
which the actual limits may exist.

8 Speculation and Future Work
Raising the limits from 64 KiB and 100 FLOP/S
seems possible, and would be useful future research.
2 MiB and 1 GFLOP/S probably could be demon-
strated for the AGI and superintelligence limits, and
would allow more useful unrestricted computers. Re-
search on if and what kind of networking can be al-
lowed would be useful. Research how much Read
only, Write only, and Write once/Read many storage
can be allowed would be useful.

A 512 KiB computer with one or two 720 KiB
floppy drives, and a 1200 bits/sec network connection
could be used for many things we currently use com-
puters for including GUI word processing, spread-
sheets, email, bulletin board systems, a C compiler,

12Note that a Commodore 64 did not have a built in disk
drive. Adding an external disk drive would result in having
more than 64 KiB of R/W storage, but a Commodore 64 could
be used either stand-alone or with a manually operated cas-
sette tape drive.

13For example, the PIC16F13113 chip was introduced in
2023 and has 256 bytes of RAM and 3.5 KiB of Flash (Mi-
crochip Technology Inc., 2024).

and MicroPython programming.14 Remove the net-
work connection and this is a vastly safer environ-
ment to run AI programs that we do not fully under-
stand.

Using high powered computers for AI research is in
some sense like using a 25 kVolt AC for experiments
before fully understanding electricity. It would be
much safer to experiment with 3 Volt DC. We need
to have a better idea what computational amounts
are low enough to be safe and which can lead to ac-
cidental AGI creation.

Lastly, there is usefulness in restrictions and reg-
ulations even if they are far above the provable lim-
its, since the danger of accidentally creating a non-
aligned independence gaining AGI increases as com-
putational power goes up.

These are my own opinions and not those of my
employer. This document may be distributed verbatim
in any media.
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