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SUMMARY

The report gives a defining description of the tiny subset of
the programming language Scheme. Scheme is a statically
scoped and properly tail recursive dialect of the Lisp pro-
gramming language [10] invented by Guy Lewis Steele Jr.
and Gerald Jay Sussman. It was designed to have excep-
tionally clear and simple semantics and few different ways
to form expressions. Tiny Scheme is a purely functional
subset of Scheme.

The introduction offers a brief history of the language and
of the report.

The first three chapters present the fundamental ideas of
the language and describe the notational conventions used
for describing the language and for writing programs in the
language.

Chapters 4 and 5 describe the syntax and semantics of
expressions, definitions, programs, and libraries.

Chapter 6 describes Scheme’s built-in procedures, which
include all of the language’s data manipulation primitives.

Chapter 7 provides a formal syntax for Scheme written in
extended BNF, along with a formal denotational semantics.
An example of the use of the language follows the formal
syntax and semantics.

The report concludes with a list of references and an al-
phabetic index.

Note: The editors of the R7RS, R5RS and R6RS reports are

listed as authors of this report in recognition of the substan-

tial portions of this report that are copied directly from R5RS,

R6RS and R7RS. There is no intended implication that those

editors, individually or collectively, support or do not support

this report.
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INTRODUCTION

Programming languages should be designed not by piling
feature on top of feature, but by removing the weaknesses
and restrictions that make additional features appear nec-
essary. Tiny Scheme continues this tradition by creating
a smaller subset of R7RS that can be easily implemented
and understood, yet remains a full programming language.
Features including side effects and continuations that add
complication to both the denotational semantics and the
implementation are removed.

Background

The first description of Scheme was written in 1975 [20].
A revised report [15] appeared in 1978, which described
the evolution of the language as its MIT implementation
was upgraded to support an innovative compiler [16]. An
introductory computer science textbook using Scheme was
published in 1984 [1].

Fifteen representatives of the major implementations of
Scheme met in October 1984. Their report, the RRRS [4],
was published at MIT and Indiana University in the sum-
mer of 1985. Further revision took place in the spring of
1986, resulting in the R3RS [14]. Work in the spring of
1988 resulted in R4RS [5], which became the basis for the
IEEE Standard for the Scheme Programming Language in
1991 [8]. In 1998, several additions to the IEEE standard,
including high-level hygienic macros, multiple return val-
ues, and eval, were finalized as the R5RS [9].

In the fall of 2006, work began on a more ambitious stan-
dard. The resulting standard, the R6RS, was completed in
August 2007 [17].

In 2009 the Scheme Steering Committee decided to divide
the standard into two separate but compatible languages
— a “small” language and a “large” language. The the
“small” language of that effort resulted in R7RS [18].

We intend this report to belong to the entire Scheme com-
munity, and so we grant permission to copy it in whole
or in part without fee. In particular, we encourage imple-
menters of Tiny Scheme to use this report as a starting
point for manuals and other documentation, modifying it
as necessary.
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DESCRIPTION OF THE LANGUAGE

1. Overview of Scheme

1.1. Semantics

This section gives an overview of Scheme’s semantics. A
detailed informal semantics is the subject of chapters 3
through 6. For reference purposes, section 7.2 provides a
formal semantics of Tiny Scheme.

Scheme is a statically scoped programming language. Each
use of a variable is associated with a lexically apparent
binding of that variable.

Scheme is a dynamically typed language. Types are asso-
ciated with values (also called objects) rather than with
variables. Statically typed languages, by contrast, asso-
ciate types with variables and expressions as well as with
values.

All objects created in the course of a Scheme computation,
including procedures, have unlimited extent. No Scheme
object is ever destroyed. The reason that implementations
of Scheme do not (usually!) run out of storage is that they
are permitted to reclaim the storage occupied by an object
if they can prove that the object cannot possibly matter to
any future computation.

Scheme procedures are objects in their own right. Proce-
dures can be created dynamically, stored in data structures,
returned as results of procedures, and so on.

Arguments to Scheme procedures are always passed by
value, which means that the actual argument expressions
are evaluated before the procedure gains control, regardless
of whether the procedure needs the result of the evaluation.

Tiny Scheme’s model of arithmetic is simplified compared
to R7RS and only integers are required.

1.2. Syntax

Scheme, like most dialects of Lisp, employs a fully paren-
thesized prefix notation for programs and other data; the
grammar of Scheme generates a sublanguage of the lan-
guage used for data. An important consequence of this
simple, uniform representation is that Scheme programs
and data can easily be treated uniformly by other Scheme
programs.

The formal syntax of Scheme is described in section 7.1.

1.2.1. Base and optional features

Tiny Scheme is already reduced, but if a smaller subset
is desired, either symbols or integers could be removed.
Either cond or if could be removed. If extended, it is
recommend to use R7RS as a guide. For cases where both
R7RS and Tiny Scheme are using defined behavior, it is
intended that Tiny Scheme should have identical results.

1.2.2. Error situations and unspecified behavior

When speaking of an error situation, this report uses the
phrase “an error is signaled” to indicate that implementa-
tions must detect and report the error.

If such wording does not appear in the discussion of an
error, then implementations are not required to detect or
report the error, though they are encouraged to do so.

If the value of an expression is said to be “unspecified,”
then the expression must evaluate to some object without
signaling an error, but the value depends on the imple-
mentation; this report explicitly does not say what value
is returned.

Finally, the words and phrases “must,” “must not,”
“shall,” “shall not,” “should,” “should not,” “may,” “re-
quired,” “recommended,” and “optional,” although not
capitalized in this report, are to be interpreted as described
in RFC 2119 [2]. They are used only with reference to im-
plementer or implementation behavior, not with reference
to programmer or program behavior.

1.2.3. Entry format

Chapters 4 and 6 are organized into entries. Each entry
describes one language feature or a group of related fea-
tures, where a feature is either a syntactic construct or a
procedure. An entry begins with one or more header lines
of the form

template category

for identifiers in the base language.

If category is “syntax,” the entry describes an expression
type, and the template gives the syntax of the expression
type. Components of expressions are designated by syn-
tactic variables, which are written using angle brackets,
for example 〈expression〉 and 〈variable〉. Syntactic vari-
ables are intended to denote segments of program text; for
example, 〈expression〉 stands for any string of characters
which is a syntactically valid expression. The notation

〈thing1〉 . . .

indicates zero or more occurrences of a 〈thing〉, and

〈thing1〉 〈thing2〉 . . .

indicates one or more occurrences of a 〈thing〉.

If category is “auxiliary syntax,” then the entry describes
a syntax binding that occurs only as part of specific sur-
rounding expressions. Any use as an independent syntactic
construct or variable is an error.

If category is “procedure,” then the entry describes a pro-
cedure, and the header line gives a template for a call to the
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procedure. Argument names in the template are italicized .
Thus the header line

(car pair) procedure

indicates that the procedure bound to the car variable
takes one argument, a pair (see below). The header lines

(- n) procedure
(- n1 n2) procedure

indicate that the - procedure must be defined to take either
one or two arguments.

It is an error for a procedure to be presented with an ar-
gument that it is not specified to handle. For succinctness,
we follow the convention that if an argument name is also
the name of a type listed in section 3.2, then it is an error if
that argument is not of the named type. For example, the
header line for car given above dictates that the only ar-
gument to car is a pair. The following naming conventions
also imply type restrictions:

boolean boolean value (#t or #f)
k, k1, . . . kj , . . . non-negative integer
list, list1, . . . listj , . . . list (see section 6.4)
n, n1, . . . nj , . . . integer
obj any object
pair pair
proc procedure
symbol symbol
thunk zero-argument procedure

1.2.4. Evaluation examples

The symbol “=⇒” used in program examples is read “eval-
uates to.” For example,

(* 5 8) =⇒ 40

means that the expression (* 5 8) evaluates to the ob-
ject 40. Or, more precisely: the expression given by the
sequence of characters “(* 5 8)” evaluates, in the initial
environment, to an object that can be represented exter-
nally by the sequence of characters “40.” See section 3.3
for a discussion of external representations of objects.

1.2.5. Naming conventions

By convention, ? is the final character of the names of
procedures that always return a boolean value. Such pro-
cedures are called predicates. Predicates are generally un-
derstood to be side-effect free, except that they may have
an error when passed the wrong type of argument.

A command is a procedure that does not return useful val-
ues to its continuation.

A thunk is a procedure that does not accept arguments.

2. Lexical conventions

This section gives an informal account of some of the lexical
conventions used in writing Scheme programs. For a formal
syntax of Scheme, see section 7.1.

2.1. Identifiers

An identifier is any sequence of letters, digits, and “ex-
tended identifier characters” provided that it does not have
a prefix which is a valid number. However, the . token (a
single period) used in the list syntax is not an identifier.

All implementations of Scheme must support the following
extended identifier characters:

! $ % & * + - . / : < = > ? @ ^ _ ~

Here are some examples of identifiers:

... +

+soup+ <=?

->string a34kTMNs

lambda list->vector

q V17a

the-word-recursion-has-many-meanings

See section 7.1.1 for the formal syntax of identifiers.

Identifiers have two uses within Scheme programs:

• Any identifier can be used as a variable or as a syn-
tactic keyword (see section 3.1).

• When an identifier appears as a literal or within a
literal (see section 4.1.2), it is being used to denote a
symbol (see section 6.5).

In contrast with earlier revisions of the report [9], the syn-
tax distinguishes between upper and lower case in identi-
fiers and in characters specified using their names. None
of the identifiers defined in this report contain upper-case
characters, even when they appear to do so as a result
of the English-language convention of capitalizing the first
word of a sentence.

2.2. Whitespace and comments

Whitespace characters include the space, tab, and new-
line characters. (Implementations may provide additional
whitespace characters such as page break.) Whitespace is
used for improved readability and as necessary to separate
tokens from each other, a token being an indivisible lexical
unit such as an identifier or number, but is otherwise in-
significant. Whitespace can occur between any two tokens,
but not within a token.

The lexical syntax includes one comment form. Comments
are treated exactly like whitespace.
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A semicolon (;) indicates the start of a line comment. The
comment continues to the end of the line on which the
semicolon appears.

2.3. Other notations

For a description of the notations used for numbers, see
section 6.2.

. + - These are used in numbers, and can also occur any-
where in an identifier. A delimited plus or minus sign
by itself is also an identifier. Note that a sequence of
two or more periods is an identifier.

( ) Parentheses are used for grouping and to notate lists
(section 6.4).

’ The apostrophe (single quote) character is used to indi-
cate literal data (section 4.1.2).

[ ] { } Left and right square and curly brackets (braces)
are reserved for possible future extensions to the lan-
guage.

` , ,@ " \ The grave accent, character comma and se-
quence comma at-sign, quotation mark and backslash
are used by R7RS.

#t #f These are the boolean constants (section 6.3).

3. Basic concepts

3.1. Variables, syntactic keywords, and re-
gions

An identifier can name either a type of syntax or a value.
An identifier that names a type of syntax is called a syn-
tactic keyword and is said to be bound to a transformer for
that syntax. An identifier that names a value is called a
variable and is said to be bound to that value. The set of
all visible bindings in effect at some point in a program
is known as the environment in effect at that point. The
value to which a variable is bound is called the variable’s
value. In R7RS variables are technically bound to a mem-
ory location instead of a value.

Certain expression types bind variables to values. These
expression types are called binding constructs.

The most fundamental of the variable binding constructs is
the lambda expression, because all other variable binding
constructs can be explained in terms of lambda expressions.
The other variable binding construct is let.

Scheme is a language with block structure. To each place
where an identifier is bound in a program there corresponds

a region of the program text within which the binding is
visible. The region is determined by the particular bind-
ing construct that establishes the binding; if the binding is
established by a lambda expression, for example, then its
region is the entire lambda expression. Every mention of
an identifier refers to the binding of the identifier that es-
tablished the innermost of the regions containing the use.
If there is no binding of the identifier whose region con-
tains the use, then the use refers to the binding for the
variable in the global environment, if any (chapters 4 and
6); if there is no binding for the identifier, it is said to be
unbound.

3.2. Disjointness of types

No object satisfies more than one of the following predi-
cates:

boolean? null?

number? pair?

procedure? symbol?

These predicates define the types boolean, the empty list
object, number, pair, procedure, and symbol.

Although there is a separate boolean type, any Scheme
value can be used as a boolean value for the purpose of
a conditional test. As explained in section 6.3, all values
count as true in such a test except for #f. This report uses
the word “true” to refer to any Scheme value except #f,
and the word “false” to refer to #f.

3.3. External representations

An important concept in Scheme (and Lisp) is that of the
external representation of an object as a sequence of char-
acters. For example, an external representation of the inte-
ger 28 is the sequence of characters “28”, and an external
representation of a list consisting of the integers 8 and 13
is the sequence of characters “(8 13)”.

The external representation of an object is not necessarily
unique. The integer 28 also has representations “+28”, and
the list in the previous paragraph also has the representa-
tions “( 08 13 )” (see section 6.4).

Many objects have standard external representations, but
some, such as procedures, do not have standard represen-
tations (although particular implementations may define
representations for them).

An external representation can be written in a program to
obtain the corresponding object (see quote, section 4.1.2).

Note that the sequence of characters “(+ 2 6)” is not an
external representation of the integer 8, even though it is an
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expression evaluating to the integer 8; rather, it is an exter-
nal representation of a three-element list, the elements of
which are the symbol + and the integers 2 and 6. Scheme’s
syntax has the property that any sequence of characters
that is an expression is also the external representation of
some object. This can lead to confusion, since it is not
always obvious out of context whether a given sequence of
characters is intended to denote data or program, but it is
also a source of power, since it facilitates writing programs
such as interpreters and compilers that treat programs as
data (or vice versa).

The syntax of external representations of various kinds of
objects accompanies the description of the primitives for
manipulating the objects in the appropriate sections of
chapter 6.

3.4. Storage model

Since side effects are not allowed, implementations may
choose to any convenient storage model.

3.5. Proper tail recursion

Implementations of Scheme are required to be properly tail-
recursive. Procedure calls that occur in certain syntactic
contexts defined below are tail calls. A Scheme implemen-
tation is properly tail-recursive if it supports an unbounded
number of active tail calls. A call is active if the called pro-
cedure might still return. Calls can return at most once
and the active calls are those that have not yet returned.
A formal definition of proper tail recursion can be found
in [3].

Rationale:

Intuitively, no space is needed for an active tail call because the
continuation that is used in the tail call has the same semantics
as the continuation passed to the procedure containing the call.
Although an improper implementation might use a new con-
tinuation in the call, a return to this new continuation would
be followed immediately by a return to the continuation passed
to the procedure. A properly tail-recursive implementation re-
turns to that continuation directly.

Proper tail recursion was one of the central ideas in Steele and
Sussman’s original version of Scheme. Their first Scheme in-
terpreter implemented both functions and actors. Control flow
was expressed using actors, which differed from functions in
that they passed their results on to another actor instead of
returning to a caller. In the terminology of this section, each
actor finished with a tail call to another actor.

Steele and Sussman later observed that in their interpreter the
code for dealing with actors was identical to that for functions
and thus there was no need to include both in the language.

A tail call is a procedure call that occurs in a tail con-
text. Tail contexts are defined inductively. Note that a tail

context is always determined with respect to a particular
lambda expression.

• The last expression within the body of a lambda ex-
pression, shown as 〈tail expression〉 below, occurs in a
tail context.

(lambda 〈formals〉
〈definition〉* 〈expression〉* 〈tail expression〉)

• If one of the following expressions is in a tail context,
then the subexpressions shown as 〈tail expression〉 are
in a tail context. These were derived from rules in
the grammar given in chapter 7 by replacing some oc-
currences of 〈body〉 with 〈tail body〉, and some oc-
currences of 〈expression〉 with 〈tail expression〉. Only
those rules that contain tail contexts are shown here.

(if 〈expression〉 〈tail expression〉 〈tail expression〉)
(if 〈expression〉 〈tail expression〉)

(cond 〈cond clause〉+)
(cond 〈cond clause〉* (else 〈tail expression〉))

(and 〈expression〉* 〈tail expression〉)
(or 〈expression〉* 〈tail expression〉)

(let (〈binding spec〉*) 〈tail body〉)
(let 〈variable〉 (〈binding spec〉*) 〈tail body〉)

where

〈cond clause〉 −→ (〈test〉 〈tail expression〉)

〈tail body〉 −→ 〈definition〉* 〈tail expression〉

In addition, the first argument passed to apply must be
called via a tail call.

In the following example the only tail call is the call to f.
None of the calls to g or h are tail calls. The reference to
x is in a tail context, but it is not a call and thus is not a
tail call.

(lambda ()

(if (g)

(let ((x (h)))

x)

(and (g) (f))))

Note: Implementations may recognize that some non-tail calls,

such as the call to h above, can be evaluated as though they

were tail calls. In the example above, the let expression could
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be compiled as a tail call to h. (The possibility of h return-

ing an unexpected number of values can be ignored, because

in that case the effect of the let is explicitly unspecified and

implementation-dependent.)

4. Expressions

Expression types are categorized as primitive or derived.
Primitive expression types include variables and procedure
calls. Derived expression types are not semantically primi-
tive, but can instead be explained in terms of the primitive
constructs as in section 7.3.

4.1. Primitive expression types

4.1.1. Variable references

〈variable〉 syntax

An expression consisting of a variable (section 3.1) is a
variable reference. The value of the variable reference is
the value stored the variable. It is an error to reference an
unbound variable.

(define x 28)

x =⇒ 28

4.1.2. Literal expressions

(quote 〈datum〉) syntax
’〈datum〉 syntax
〈constant〉 syntax

(quote 〈datum〉) evaluates to 〈datum〉. 〈Datum〉 can be
any external representation of a Scheme object (see sec-
tion 3.3). This notation is used to include literal constants
in Scheme code.

(quote a) =⇒ a

(quote (a b c)) =⇒ (a b c)

(quote (+ 1 2)) =⇒ (+ 1 2)

(quote 〈datum〉) can be abbreviated as ’〈datum〉. The
two notations are equivalent in all respects.

’a =⇒ a

’(a b c) =⇒ (a b c)

’() =⇒ ()

’(+ 1 2) =⇒ (+ 1 2)

’(quote a) =⇒ (quote a)

’’a =⇒ (quote a)

Numerical constants and boolean constants evaluate to
themselves; they need not be quoted.

’145932 =⇒ 145932

145932 =⇒ 145932

’#t =⇒ #t

#t =⇒ #t

4.1.3. Procedure calls

(〈operator〉 〈operand1〉 . . . ) syntax

A procedure call is written by enclosing in parentheses an
expression for the procedure to be called followed by ex-
pressions for the arguments to be passed to it. The op-
erator and operand expressions are evaluated (in an un-
specified order) and the resulting procedure is passed the
resulting arguments.

(+ 3 4) =⇒ 7

((if #f + *) 3 4) =⇒ 12

The procedures in this document are available as the val-
ues of variables exported by the standard libraries. For ex-
ample, the addition and multiplication procedures in the
above examples are the values of the variables + and * in
the base library. New procedures are created by evaluating
lambda expressions (see section 4.1.4).

Procedure calls in Tiny Scheme return one value.

Note: In contrast to other dialects of Lisp, the order of

evaluation is unspecified, and the operator expression and the

operand expressions are always evaluated with the same evalu-

ation rules.

Note: Although the order of evaluation is otherwise unspeci-

fied, the effect of any concurrent evaluation of the operator and

operand expressions is constrained to be consistent with some

sequential order of evaluation. The order of evaluation may be

chosen differently for each procedure call.

Note: In many dialects of Lisp, the empty list, (), is a legiti-

mate expression evaluating to itself. In Scheme, it is an error.

4.1.4. Procedures

(lambda 〈formals〉 〈body〉) syntax

Syntax: 〈Formals〉 is a formal arguments list as described
below, and 〈body〉 is a sequence of zero or more definitions
followed by one expression.

Semantics: A lambda expression evaluates to a procedure.
The environment in effect when the lambda expression was
evaluated is remembered as part of the procedure. When
the procedure is later called with some actual arguments,
the environment in which the lambda expression was evalu-
ated will be extended by binding the variables in the formal
argument list to fresh locations, and the corresponding ac-
tual argument values will be stored in those locations. (A
fresh location is one that is distinct from every previously
existing location.) Next, the expressions in the body of the
lambda expression will be evaluated sequentially in the ex-
tended environment. The results of the last expression in
the body will be returned as the results of the procedure
call.
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(lambda (x) (+ x x)) =⇒ a procedure
((lambda (x) (+ x x)) 4) =⇒ 8

(define reverse-subtract

(lambda (x y) (- y x)))

(reverse-subtract 7 10) =⇒ 3

(define add4

(let ((x 4))

(lambda (y) (+ x y))))

(add4 6) =⇒ 10

〈Formals〉 have one of the following forms:

• (〈variable1〉 . . . ): The procedure takes a fixed num-
ber of arguments; when the procedure is called, the
arguments will be stored in fresh locations that are
bound to the corresponding variables.

• 〈variable〉: The procedure takes any number of argu-
ments; when the procedure is called, the sequence of
actual arguments is converted into a newly allocated
list, and the list is stored in a fresh location that is
bound to 〈variable〉.

It is an error for a 〈variable〉 to appear more than once in
〈formals〉.

((lambda x x) 3 4 5 6) =⇒ (3 4 5 6)

4.1.5. Conditionals

(if 〈test〉 〈consequent〉 〈alternate〉) syntax
(if 〈test〉 〈consequent〉) syntax

Syntax: 〈Test〉, 〈consequent〉, and 〈alternate〉 are expres-
sions.

Semantics: An if expression is evaluated as follows: first,
〈test〉 is evaluated. If it yields a true value (see section 6.3),
then 〈consequent〉 is evaluated and its values are returned.
Otherwise 〈alternate〉 is evaluated and its values are re-
turned. If 〈test〉 yields a false value and no 〈alternate〉 is
specified, then the result of the expression is unspecified.

(if (> 3 2) ’yes ’no) =⇒ yes

(if (> 2 3) ’yes ’no) =⇒ no

(if (> 3 2)

(- 3 2)

(+ 3 2)) =⇒ 1

4.2. Derived expression types

The constructs in this section can be created via rewrite
rules with the primitive constructs described in the previ-
ous section.

4.2.1. Conditionals

(cond 〈clause1〉 〈clause2〉 . . . ) syntax
else auxiliary syntax

Syntax: 〈Clauses〉 take one form

(〈test〉 〈expression〉)

where 〈test〉 is any expression. The last 〈clause〉 can be an
“else clause,” which has the form

(else 〈expression〉).

Semantics: A cond expression is evaluated by evaluating
the 〈test〉 expressions of successive 〈clause〉s in order until
one of them evaluates to a true value (see section 6.3).
When a 〈test〉 evaluates to a true value, the remaining
〈expression〉 in its 〈clause〉 is evaluated, and the result of
the 〈expression〉 in the 〈clause〉 are returned as the results
of the entire cond expression.

If all 〈test〉s evaluate to #f, and there is no else clause,
then the result of the conditional expression is unspecified;
if there is an else clause, then its 〈expression〉 is evaluated,
and the value of it is returned.

(cond ((> 3 2) ’greater)

((< 3 2) ’less)) =⇒ greater

(cond ((> 3 3) ’greater)

((< 3 3) ’less)

(else ’equal)) =⇒ equal

(and 〈test1〉 . . . ) syntax

Semantics: The 〈test〉 expressions are evaluated from left
to right, and if any expression evaluates to #f (see sec-
tion 6.3), then #f is returned. Any remaining expressions
are not evaluated. If all the expressions evaluate to true
values, the value of the last expression is returned. If there
are no expressions, then #t is returned.

(and (= 2 2) (> 2 1)) =⇒ #t

(and (= 2 2) (< 2 1)) =⇒ #f

(and 1 2 ’c ’(f g)) =⇒ (f g)

(and) =⇒ #t

(or 〈test1〉 . . . ) syntax

Semantics: The 〈test〉 expressions are evaluated from left
to right, and the value of the first expression that evaluates
to a true value (see section 6.3) is returned. Any remaining
expressions are not evaluated. If all expressions evaluate
to #f or if there are no expressions, then #f is returned.

(or (= 2 2) (> 2 1)) =⇒ #t

(or (= 2 2) (< 2 1)) =⇒ #t

(or #f #f #f) =⇒ #f

(or ’(b c) (car ’a)) =⇒ (b c)
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4.2.2. Binding constructs

The binding construct let gives Scheme a block structure,
like Algol 60. In a let expression, the initial values are
computed before any of the variables become bound.

(let 〈bindings〉 〈body〉) syntax

Syntax: 〈Bindings〉 has the form

((〈variable1〉 〈init1〉) . . . ),

where each 〈init〉 is an expression, and 〈body〉 is a sequence
of zero or more definitions followed by one expression as
described in section 4.1.4. It is an error for a 〈variable〉 to
appear more than once in the list of variables being bound.

Semantics: The 〈init〉s are evaluated in the current envi-
ronment (in some unspecified order), the 〈variable〉s are
bound to fresh locations holding the results, the 〈body〉 is
evaluated in the extended environment, and the values of
the last expression of 〈body〉 are returned. Each binding
of a 〈variable〉 has 〈body〉 as its region.

(let ((x 2) (y 3))

(* x y)) =⇒ 6

(let ((x 2) (y 3))

(let ((x 7)

(z (+ x y)))

(* z x))) =⇒ 35

5. Program structure

5.1. Programs

A Scheme program consists of a sequence of expressions
and definitions. Expressions are described in chapter 4.
Definitions are variable definitions which are explained in
this chapter. They are valid in some, but not all, contexts
where expressions are allowed, specifically at the outermost
level of a 〈program〉 and at the beginning of a 〈body〉.
Expressions occurring at the outermost level of a program
do not create any bindings. They are executed in order
when the program is invoked or loaded, and typically per-
form some kind of initialization.

Programs are typically stored in files, although in some
implementations they can be entered interactively into a
running Scheme system. Other paradigms are possible.

5.2. Variable definitions

A variable definition binds one identifier and specifies an
initial value for it. The only kind of variable definition
takes the following form:

• (define 〈variable〉 〈expression〉)

5.2.1. Top level definitions

At the outermost level of a program, a definition

(define 〈variable〉 〈expression〉)

which adds or updates the environment with the new as-
signment. Note that the environment of a lambda expres-
sion includes the variable so it can be called recursively.

(define add3

(lambda (x) (+ x 3)))

(add3 3) =⇒ 6

(define first car)

(first ’(1 2)) =⇒ 1

5.2.2. Internal definitions

Definitions can occur at the beginning of a 〈body〉 (that is,
the body of a lambda, or let). Note that such a body might
not be apparent until after expansion of other syntax. Such
definitions are known as internal definitions as opposed
to the global definitions described above. The variables
defined by internal definitions are local to the 〈body〉. That
is, 〈variable〉 is bound rather than assigned, and the region
of the binding is the following definitions and expressions
in the 〈body〉. For example,

(let ((x 5))

(define bar (lambda (a b) (+ (* a b) a)))

(define foo (lambda (y) (bar x y)))

(foo (+ x 3))) =⇒ 45

It is an error if it is not possible to evaluate each
〈expression〉 of every internal definition in a 〈body〉 with-
out assigning or referring to the value of the corresponding
〈variable〉 or the 〈variable〉 of any of the definitions that
follow it in 〈body〉.
It is an error to define the same identifier more than once
in the same 〈body〉.

5.3. The REPL

Implementations may provide an interactive session called
a REPL (Read-Eval-Print Loop), where expressions and
definitions can be entered and evaluated one at a time.

An implementation may provide a mode of operation in
which the REPL reads its input from a file.

6. Standard procedures

This chapter describes Scheme’s built-in procedures.

A program can use a global variable definition to bind any
variable. These operations do not modify the behavior of
any procedure defined in this report. Altering any global
binding that has not been introduced by a definition has an
unspecified effect on the behavior of the procedures defined
in this chapter.
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6.1. Equivalence predicates

A predicate is a procedure that always returns a boolean
value (#t or #f). An equivalence predicate is the computa-
tional analogue of a mathematical equivalence relation; it
is symmetric, reflexive, and transitive.

(eq? obj1 obj2) procedure

The eq? procedure can determine if symbols and booleans
are equivalent. The empty list is only equivalent to another
empty list. Two different types are never equivalent, and
other comparisons are unspecified.

The eq? procedure returns #t if:

• obj1 and obj2 are both #t or both #f.

• obj1 and obj2 are both symbols and are the same sym-
bol (section 6.5).

• obj1 and obj2 are both the empty list.

The eq? procedure returns #f if:

• obj1 and obj2 are of different types (section 3.2).

• one of obj1 and obj2 is #t but the other is #f.

• obj1 and obj2 are symbols but are not the same symbol
(section 6.5).

• one of obj1 and obj2 is the empty list but the other is
not.

(eq? ’a ’a) =⇒ #t

(eq? ’(a) ’(a)) =⇒ unspecified
(eq? (list ’a) (list ’a)) =⇒ unspecified
(eq? ’() ’()) =⇒ #t

(eq? 2 2) =⇒ unspecified
(eq? car car) =⇒ unspecified
(let ((n (+ 2 3)))

(eq? n n)) =⇒ unspecified
(let ((x ’(a)))

(eq? x x)) =⇒ unspecified
(let ((x ’()))

(eq? x x)) =⇒ #t

(let ((p (lambda (x) x)))

(eq? p p)) =⇒ unspecified
(eq? #f ’nil) =⇒ #f

Rationale: eq? can be used to compare non-numeric atoms,

and other uses are left unspecified.

6.2. Numbers

It is important to distinguish between mathematical num-
bers, the Scheme numbers that attempt to model them,
the machine representations used to implement the Scheme
numbers, and notations used to write numbers. This re-
port uses the types number, and integer to refer to both
mathematical numbers and Scheme numbers.

Tiny Scheme implementations should support integers suf-
ficiently large to calculate the length of any allowable list,
and which usually can be satisfied by signed integers of the
same length as machine addresses.

6.2.1. Syntax of numerical constants

The syntax of the written representations for numbers is
described formally in section 7.1.1. Numbers are written
in decimal.

6.2.2. Numerical operations

The reader is referred to section 1.2.3 for a summary of
the naming conventions used to specify restrictions on the
types of arguments to numerical routines.

(number? obj) procedure

This numerical type predicate can be applied to any kind
of argument, including non-numbers. It return #t if the
object is of the named type, and otherwise it return #f.

(number? 3) =⇒ #t

(number? ’(1)) =⇒ #f

(= n1 n2) procedure
(< n1 n2) procedure
(> n1 n2) procedure

These procedures return #t if their arguments are (respec-
tively): equal, monotonically increasing, monotonically de-
creasing, and #f otherwise.

These predicates are required to be transitive.

(zero? n) procedure

This numerical predicate tests if a number equals zero.

(+ n1 n2) procedure
(* n1 n2) procedure

These procedures return the sum or product of their argu-
ments.

(+ 3 4) =⇒ 7

(* 4 5) =⇒ 20
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(- n) procedure
(- n1 n2) procedure

With two arguments, this procedure returns the difference
of its arguments, associating to the left. With one argu-
ment, however, it returns the additive inverse of its argu-
ment.

(- 3 4) =⇒ -1

(- 3) =⇒ -3

6.3. Booleans

The standard boolean objects for true and false are writ-
ten as #t and #f. What really matters, though, are the
objects that the Scheme conditional expressions (if, cond,
and, or) treat as true or false. The phrase “a true value”
(or sometimes just “true”) means any object treated as
true by the conditional expressions, and the phrase “a false
value” (or “false”) means any object treated as false by the
conditional expressions.

Of all the Scheme values, only #f counts as false in condi-
tional expressions. All other Scheme values, including #t,
count as true.

Note: Unlike some other dialects of Lisp, Scheme distinguishes

#f and the empty list from each other and from the symbol

nil.

Boolean constants evaluate to themselves, so they do not
need to be quoted in programs.

#t =⇒ #t

#f =⇒ #f

’#f =⇒ #f

(not obj) procedure

The not procedure returns #t if obj is false, and returns
#f otherwise.

(not #t) =⇒ #f

(not 3) =⇒ #f

(not ’(3)) =⇒ #f

(not #f) =⇒ #t

(not ’()) =⇒ #f

(not ’nil) =⇒ #f

(boolean? obj) procedure

The boolean? predicate returns #t if obj is either #t or #f
and returns #f otherwise.

(boolean? #f) =⇒ #t

(boolean? 0) =⇒ #f

(boolean? ’()) =⇒ #f

6.4. Pairs and lists

A pair (sometimes called a dotted pair) is a record structure
with two fields called the car and cdr fields (for historical
reasons). Pairs are created by the procedure cons. The
car and cdr fields are accessed by the procedures car and
cdr.

Pairs are used primarily to represent lists. A list can be
defined recursively as either the empty list or a pair whose
cdr is a list. More precisely, the set of lists is defined as
the smallest set X such that

• The empty list is in X .

• If list is in X , then any pair whose cdr field contains
list is also in X .

The objects in the car fields of successive pairs of a list are
the elements of the list. For example, a two-element list
is a pair whose car is the first element and whose cdr is a
pair whose car is the second element and whose cdr is the
empty list. The length of a list is the number of elements,
which is the same as the number of pairs.

The empty list is a special object of its own type. It is not
a pair, it has no elements, and its length is zero.

Note: The above definitions imply that all lists have finite

length and are terminated by the empty list.

The most general notation (external representation) for
Scheme pairs is the “dotted” notation (c1 . c2) where
c1 is the value of the car field and c2 is the value of the
cdr field. For example (4 . 5) is a pair whose car is 4 and
whose cdr is 5. Note that (4 . 5) is the external represen-
tation of a pair, not an expression that evaluates to a pair.
Note that Tiny Scheme implementations are not required
to allow “dotted” notation as input and datums.

A more streamlined notation can be used for lists: the
elements of the list are simply enclosed in parentheses and
separated by spaces. The empty list is written (). For
example,

(a b c d e)

and

(a . (b . (c . (d . (e . ())))))

are equivalent notations for a list of symbols.

A chain of pairs not ending in the empty list is called an
improper list. Note that an improper list is not a list.
The list and dotted notations can be combined to represent
improper lists:

(a b c . d)

is equivalent to
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(a . (b . (c . d)))

Whether a given pair is a list depends upon what is stored
in the cdr field.

Within literal expressions and representations of objects
the form ’〈datum〉 denotes a two-element list whose first
elements is the symbols quote. The second element in each
case is 〈datum〉. This convention is supported so that ar-
bitrary Scheme programs can be represented as lists. That
is, according to Scheme’s grammar, every 〈expression〉 is
also a 〈datum〉 (see section 7.1.2). See section 3.3.

(pair? obj) procedure

The pair? predicate returns #t if obj is a pair, and other-
wise returns #f.

(pair? (cons ’a ’b)) =⇒ #t

(pair? ’(a b c)) =⇒ #t

(pair? ’()) =⇒ #f

(cons obj1 obj2) procedure

Returns a newly allocated pair whose car is obj1 and whose
cdr is obj2.

(cons ’a ’()) =⇒ (a)

(cons ’(a) ’(b c d)) =⇒ ((a) b c d)

(cons ’a 3) =⇒ (a . 3)

(cons ’(a b) ’c) =⇒ ((a b) . c)

(car pair) procedure

Returns the contents of the car field of pair . Note that it
is an error to take the car of the empty list.

(car ’(a b c)) =⇒ a

(car ’((a) b c d)) =⇒ (a)

(car (cons 1 2)) =⇒ 1

(car ’()) =⇒ error

(cdr pair) procedure

Returns the contents of the cdr field of pair . Note that it
is an error to take the cdr of the empty list.

(cdr ’((a) b c d)) =⇒ (b c d)

(cdr (cons 1 2)) =⇒ 2

(cdr ’()) =⇒ error

(null? obj) procedure

Returns #t if obj is the empty list, otherwise returns #f.

6.5. Symbols

Symbols are objects whose usefulness rests on the fact that
two symbols are identical (in the sense of eq?) if and only
if their names are spelled the same way. For instance, they
can be used the way enumerated values are used in other
languages.

The rules for writing a symbol are exactly the same as the
rules for writing an identifier; see sections 2.1 and 7.1.1.

(symbol? obj) procedure

Returns #t if obj is a symbol, otherwise returns #f.

(symbol? ’foo) =⇒ #t

(symbol? (car ’(a b))) =⇒ #t

(symbol? ’nil) =⇒ #t

(symbol? ’()) =⇒ #f

(symbol? #f) =⇒ #f

6.6. Control features

(procedure? obj) procedure

Returns #t if obj is a procedure, otherwise returns #f.

(procedure? car) =⇒ #t

(procedure? ’car) =⇒ #f

(procedure? (lambda (x) (* x x)))

=⇒ #t

(procedure? ’(lambda (x) (* x x)))

=⇒ #f

(apply proc args) procedure

The apply procedure calls proc with the elements of the
list args as the actual arguments.

(apply + ’(3 4)) =⇒ 7

(define compose

(lambda (f g)

(lambda args

(f (apply g args)))))

((compose - *) 3 4) =⇒ -12

7. Formal syntax and semantics

This chapter provides formal descriptions of what has al-
ready been described informally in previous chapters of this
report.
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7.1. Formal syntax

This section provides a formal syntax for Scheme written
in an extended BNF.

All spaces in the grammar are for legibility. Case is signifi-
cant in the definition of 〈letter〉; for example, foo and Foo

are distinct. 〈empty〉 stands for the empty string.

The following extensions to BNF are used to make the de-
scription more concise: 〈thing〉* means zero or more occur-
rences of 〈thing〉; and 〈thing〉+ means at least one 〈thing〉.

7.1.1. Lexical structure

This section describes how individual tokens (identifiers,
numbers, etc.) are formed from sequences of characters.
The following sections describe how expressions and pro-
grams are formed from sequences of tokens.

Identifiers are terminated by a 〈delimiter〉 or by the end of
the input. So are numbers, and booleans.

The following eight characters from the ASCII repertoire
are reserved for future extensions to the language or are
used in R7RS: [ ] { } , @ " |

In addition to the identifier characters of the ASCII reper-
toire specified below, Scheme implementations may permit
any additional repertoire of Unicode characters to be em-
ployed in identifiers, provided that each such character has
a Unicode general category of Lu, Ll, Lt, Lm, Lo, Mn,
Mc, Me, Nd, Nl, No, Pd, Pc, Po, Sc, Sm, Sk, So, or Co,
or is U+200C or U+200D (the zero-width non-joiner and
joiner, respectively, which are needed for correct spelling
in Persian, Hindi, and other languages). However, it is an
error for the first character to have a general category of
Nd, Mc, or Me. It is also an error to use a non-Unicode
character in symbols or identifiers.

〈token〉 −→ 〈identifier〉 | 〈boolean〉 | 〈number〉
| ( | ) | ’

〈delimiter〉 −→ 〈whitespace〉 | 〈vertical line〉
| ( | ) | ;

〈intraline whitespace〉 −→ 〈space or tab〉
〈whitespace〉 −→ 〈intraline whitespace〉 | 〈line ending〉
〈line ending〉 −→ 〈newline〉 | 〈return〉 〈newline〉

| 〈return〉
〈comment〉 −→ ; 〈all subsequent characters up to a

line ending〉

〈identifier〉 −→ 〈initial〉 〈subsequent〉*
| 〈peculiar identifier〉

〈initial〉 −→ 〈letter〉 | 〈special initial〉
〈letter〉 −→ a | b | c | ... | z

| A | B | C | ... | Z
〈special initial〉 −→ ! | $ | % | & | * | / | : | < | =

| > | ? | ^ | _ | ~

〈subsequent〉 −→ 〈initial〉 | 〈digit〉
| 〈special subsequent〉

〈digit〉 −→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
〈explicit sign〉 −→ + | -
〈special subsequent〉 −→ 〈explicit sign〉 | .
〈peculiar identifier〉 −→ 〈explicit sign〉

| 〈explicit sign〉 〈sign subsequent〉 〈subsequent〉*
| 〈explicit sign〉 . 〈dot subsequent〉 〈subsequent〉*
| . 〈dot subsequent〉 〈subsequent〉*

〈dot subsequent〉 −→ 〈sign subsequent〉 | .
〈sign subsequent〉 −→ 〈initial〉 | 〈explicit sign〉

〈boolean〉 −→ #t | #f

〈number〉 −→ 〈sign〉 〈digit 10〉+

〈sign〉 −→ 〈empty〉 | + | -

7.1.2. External representations

〈Datum〉 is what Tiny Scheme successfully parses. Note
that any string that parses as an 〈expression〉 will also parse
as a 〈datum〉.

〈datum〉 −→ 〈simple datum〉 | 〈compound datum〉
〈simple datum〉 −→ 〈boolean〉 | 〈number〉

| 〈symbol〉
〈symbol〉 −→ 〈identifier〉
〈compound datum〉 −→ 〈list〉 | 〈abbreviation〉
〈list〉 −→ (〈datum〉*)
〈abbreviation〉 −→ ’ 〈datum〉

7.1.3. Expressions

The definitions in this and the following subsections assume
that all the syntax keywords defined in this report have not
been redefined or shadowed.

〈expression〉 −→ 〈identifier〉
| 〈literal〉
| 〈procedure call〉
| 〈lambda expression〉
| 〈conditional〉
| 〈derived expression〉

〈literal〉 −→ 〈quotation〉 | 〈self-evaluating〉
〈self-evaluating〉 −→ 〈boolean〉 | 〈number〉
〈quotation〉 −→ ’〈datum〉 | (quote 〈datum〉)
〈procedure call〉 −→ (〈operator〉 〈operand〉*)
〈operator〉 −→ 〈expression〉
〈operand〉 −→ 〈expression〉

〈lambda expression〉 −→ (lambda 〈formals〉 〈body〉)
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〈formals〉 −→ (〈identifier〉*) | 〈identifier〉
〈body〉 −→ 〈definition〉* 〈expression〉

〈conditional〉 −→ (if 〈test〉 〈consequent〉 〈alternate〉)
〈test〉 −→ 〈expression〉
〈consequent〉 −→ 〈expression〉
〈alternate〉 −→ 〈expression〉 | 〈empty〉

〈derived expression〉 −→
(cond 〈cond clause〉+)
| (cond 〈cond clause〉* (else 〈expression〉))
| (and 〈test〉*)
| (or 〈test〉*)
| (let (〈binding spec〉*) 〈body〉)

〈cond clause〉 −→ (〈test〉 〈expression〉)
〈binding spec〉 −→ (〈identifier〉 〈expression〉)

7.1.4. Programs and definitions

〈program〉 −→
〈command or definition〉+

〈command or definition〉 −→ 〈expression〉
| 〈definition〉

〈definition〉 −→ (define 〈identifier〉 〈expression〉)

7.2. Formal semantics

This section provides a formal denotational semantics for
the primitive expressions of Scheme and selected built-in
procedures. The concepts and notation used here are de-
scribed in [21]. The notation is summarized below:

〈 . . . 〉 sequence formation
s ↓ k kth member of the sequence s (1-based)
#s length of sequence s
s § t concatenation of sequences s and t
s † k drop the first k members of sequence s
t→ a, b McCarthy conditional “if t then a else b”
ρ[x/i] substitution “ρ with x for i”
x in D injection of x into domain D

x | D projection of x to domain D

The definition of K is omitted because an accurate defini-
tion of K would complicate the semantics without being
very interesting.

7.2.1. Abstract syntax

K ∈ Con constants, including quotations
I ∈ Ide identifiers (variables)

E ∈ Exp expressions
∆ ∈ Dec declarations

Exp −→ K | I | (E0 E*)
| (lambda (I*) ∆* E0)

| (lambda I ∆* E0)

| (if E0 E1 E2) | (if E0 E1)

Dec −→ (define I E0)

7.2.2. Domain equations

ν ∈ N natural numbers
T = {false, true} booleans
Q symbols
R numbers
Ep = E× E pairs
M = {false, true, null, undefined, unspecified}

miscellaneous
φ ∈ F = E*→ E procedure values
ε ∈ E = Q + R + Ep + M + F

expressed values
ρ ∈ U = Ide→ E environments

X errors

7.2.3. Semantic functions

K : Con→ E

E : Exp→ U→ E

D : Dec→ U→ U

Definition of K deliberately omitted.

E [[K]] = λρ .K[[K]]

E [[I]] = λρ . (λε . ε = undefined→
wrong “undefined variable”,

ε)(lookup ρ I)

E [[(E0 E*)]] =
λρ . (λεε* . ε ∈ F→ εε*,

wrong “bad procedure”)((E [[E0]]ρ) E [[E]]*(ρ))

E [[(lambda (I*) ∆* E0)]] =
λρ . (λε* .#ε* = #I*→

(E [[E0]])((tiedecs E [[∆*]])(extends ρ I* ε*)),
wrong “wrong number of arguments”)

E [[(lambda I ∆* E0)]] =
λρ . (λε* . (E [[E0]])((tiedecs E [[∆*]])(ρ[〈ε*〉/I])))

E [[(if E0 E1 E2)]] =
λρ . truish E [[E0]]ρ→ E [[E1]]ρ, E [[E2]]ρ

E [[(if E0 E1)]] =
λρ . truish E [[E0]]ρ→ E [[E1]]ρ, unspecified

D[[(define I E0)]] =
λρ . ρ[(λε . ε ∈ F→ Y(λI . ε), ε)(E [[E0]]ρ)/I]
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7.2.4. Auxiliary functions

lookup : U→ Ide→ E

lookup = λρI . ρI

wrong : X→? [implementation-dependent]

extends : U→ Ide*→ E*→ U

extends =
λρI*α* .#I* = 0→ ρ,

extends (ρ[(α* ↓ 1)/(I* ↓ 1)]) (I* † 1) (α* † 1)

tiedecs : U→ Dec*→ U

tiedecs =
λρψ* .#ψ* = 0→ ρ,

tiedecs ((ψ* ↓ 1)ρ) (ψ* † 1)

truish : E→ T

truish = λε . ε = false→ false, true

Y : F→ F

Y = (λ(φ) . ((λ(f) . (ff))(λ(f) . (φ(λ(I*) . ((ff)I*))))))

onearg : (E→ E)→ (E*→ E)
onearg =
λζε* .#ε* = 1→ ζ(ε* ↓ 1),

wrong “wrong number of arguments”

twoarg : (E→ E→ E)→ (E*→ E)
twoarg =
λζε* .#ε* = 2→ ζ(ε* ↓ 1)(ε* ↓ 2),

wrong “wrong number of arguments”

7.2.5. Selected Environment functions

cons : E*→ E

cons = twoarg(λε1ε2 . 〈ε1, ε2〉 in Ep)

car : E*→ E

car = onearg(λε . ε ∈ Ep → ε | Ep ↓ 1,
wrong “non-pair argument to car”)

cdr : E*→ E

cdr = onearg(λε . ε ∈ Ep → ε | Ep ↓ 2,
wrong “non-pair argument to cdr”)

eq : E*→ E

eq =
twoarg (λε1ε2 . (ε1 ∈ M ∧ ε2 ∈ M)→

(ε1 | M = ε2 | M→ true, false),
(ε1 ∈ Q ∧ ε2 ∈ Q)→

(ε1 | Q = ε2 | Q→ true, false),
(ε1 ∈ R ∧ ε2 ∈ R)→ unspecified,
(ε1 ∈ Ep ∧ ε2 ∈ Ep)→ unspecified,
(ε1 ∈ F ∧ ε2 ∈ F)→ unspecified,

false )

7.3. Derived expression types

This section gives rewrite rules for the derived expression types.
By the application of these rules, any expression can be reduced
to a semantically equivalent expression in which only the prim-
itive expression types (literal, variable, call, lambda, if) occur.

(cond (〈test〉 〈expression〉)
〈clause2〉 . . . )

≡ (if 〈test〉
(〈expression〉)
(cond 〈clause2〉 . . . ))

(cond (else 〈expression〉))
≡ (〈expression〉)

(cond)

≡ 〈some expression returning an unspecified value〉

(and) ≡ #t

(and 〈test〉) ≡ 〈test〉
(and 〈test1〉 〈test2〉 . . . )
≡ (if 〈test1〉 (and 〈test2〉 . . . ) #f)

(or) ≡ #f

(or 〈test〉) ≡ 〈test〉
(or 〈test1〉 〈test2〉 . . . )
≡ (let ((x 〈test1〉))

(if x x (or 〈test2〉 . . . )))

(let ((〈variable1〉 〈init1〉) . . . )
〈body〉)
≡ ((lambda (〈variable1〉 . . . ) 〈body〉) 〈init1〉 . . . )

EXAMPLES

Here are examples using tiny scheme.

(define list (lambda l l))

(list ’a ’b ’c) =⇒ (a b c)

(define list? (lambda (l)

(cond ((null? l) #t)

((not (pair? l)) #f)

(else (list? (cdr l)))

)

))

(list? ’(a b c)) =⇒ #t

(list? (cons ’a ’b)) =⇒ #f

Returns a list consisting of the elements of l followed by t

(define append (lambda (l t)

(cond ((null? l) t)

(else (cons (car l) (append (cdr l) t))))

))

(append ’() ’(a)) =⇒ (a)

(append ’(a b) ’(c d)) =⇒ (a b c d)
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This procedure returns the first sublist of l whose car is obj.

(define assq (lambda (obj l)

(cond ((null? l) #f)

((eq? obj (car (car l))) (car l))

(else (assq obj (cdr l)))

)))

(define e ’((a 1) (b 2) (c 3)))

(assq ’a e) =⇒ (a 1)

(assq ’b e) =⇒ (b 2)

(assq ’d e) =⇒ #f
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ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS,
KEYWORDS, AND PROCEDURES

’, 7, 12

*, 10

+, 10

-, 11

., 4

;, 5

<, 10

=, 10

>, 10

?, 4

and, 8

apply, 6, 12

binding, 5
binding construct, 5
boolean?, 5, 11

bound, 5

call, 7
car, 12, 15

cdr, 12, 15

command, 4
comment, 5, 13
cond, 8

cons, 12

define, 9

definition, 9
dotted pair, 11

else, 8

empty list, 5, 11, 12

empty list, 11
eq?, 10, 15

equivalence predicate, 10
error, 3

#f, 11
false, 5, 11
fresh, 7

global environment, 5, 9

identifier, 4, 5, 13
if, 8, 15

improper list, 11
initial environment, 9
internal definition, 9

lambda, 7, 9, 15

let, 9

list, 11

nil, 11

not, 11

null?, 12

number, 10

number?, 5, 10

object, 3
or, 8

pair, 11
pair?, 5, 12

predicate, 10
predicates, 4
procedure, 9
procedure call, 7
procedure?, 5, 12

proper tail recursion, 6

quote, 7, 12

region, 5, 9
REPL, 9

symbol?, 5, 12

syntactic keyword, 4, 5

#t, 11
tail call, 6
thunk, 4
token, 13
true, 5, 8, 11
type, 5

unbound, 5, 7
unspecified, 3

variable, 4, 5, 7
variable definition, 9

Whitespace, 4

zero?, 10
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