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GLOSSARY

classified substring — A classified substring is a substring of an input string to an
FSA that is being classified into x, y, and z portions according to the pumping
lemma. For the standard pumping lemma the entire string is classified into x,
y, and z portions. For the extended pumping lemma any substring of the input
string of proper length may serve as a classified substring.

looping state — A looping state q in an FSA is a state such that for a classified
string r = xyz in the language recognized by the FSA, x takes the FSA to state
q, y takes the FSA from state q back to state q (i.e. the processing of y causes
the FSA to loop), and z takes the FSA from state q to an accept state.

looping transitions — Looping transitions are the sequence of transitions followed
by an FSA as it processes the y portion of a classified string r = xyz in the
language recognized by the FSA.

loop portion — The loop portion of an input string is the symbols that take the
FSA through a set of looping transitions. As such, if the string is accepted,
new strings constructed by repeating or omitting the loop portion will also be
accepted.

loop substring — Any substring s of a string r in a regular language that takes the
FSA that recognizes that language from a state q back to state q is a loop
substring.

u portion — For a string r in a regular language that is to be classified according
to the extended pumping lemma, r is first factored as r = uvw, where v is the
substring in r that is classified, |v| ≥ p, and p is the constant of the extended
pumping lemma. The u portion of r is the prefix in the factorization of r as
uvw

v portion — For a string r in a regular language that is to be classified according
to the extended pumping lemma, r is first factored as r = uvw, where v is the
substring in r that is classified, |v| ≥ p, and p is the constant of the extended
pumping lemma.

w portion — For a string r in a regular language that is to be classified according
to the extended pumping lemma, r is first factored as r = uvw, where v is the
substring in r that is classified, |v| ≥ p, and p is the constant of the extended
pumping lemma. The w portion of r is the suffix in the factorization of r as
uvw.

x portion — For a string r in a regular language that is to be classified according
to the extended pumping lemma, r is first factored as r = uvw, where v is the
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substring in r that is classified, |v| ≥ p, and p is the constant of the extended
pumping lemma. If r is being classified directly, then u and w are the empty
string. For a substring v that is to be classified according to the extended
pumping lemma, v is classified directly as v = xyz, where y is the first substring
of v that leads the FSA through a loop as v is processed. In this case, x is the
prefix of v just in front of y.

y portion — For a string r in a regular language that is to be classified according
to the extended pumping lemma, r is first factored as r = uvw, where v is the
substring in r that is classified, |v| ≥ p, and p is the constant of the extended
pumping lemma. If r is being classified directly, then u and w are the empty
string. For a substring v that is to be classified according to the extended
pumping lemma, v is classified directly as v = xyz, where y is the first substring
of v that leads the FSA through a loop as v is processed.

z portion — For a string r in a regular language that is to be classified according
to the extended pumping lemma, r is first factored as r = uvw, where v is the
substring in r that is classified, |v| ≥ p, and p is the constant of the extended
pumping lemma. If r is being classified directly, then u and w are the empty
string. For a substring v that is to be classified according to the extended
pumping lemma, v is classified directly as v = xyz, where y is the first substring
of v that leads the FSA through a loop as v is processed. In this case, z is the
suffix of v just after of y.
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ABSTRACT

The pumping lemma for regular languages and its application are among the
more difficult concepts students encounter in an introductory theory of computing
course. The pumping lemma is used to prove that particular languages are not regular.
Traditional methods of teaching the pumping lemma seem inadequate for helping
average students learn this concept.

In this thesis we describe a set of software tools that help students visualize the
pumping lemma for regular language. The Java programming language was used to
create active learning animations of various aspects of the pumping lemma that run
as applets in web browsers. Each of the steps in the proof of the pumping lemma
is animated. The finite state automaton animations can be manipulated so that
the concepts can be tried easily. With the feedback provided, student mistakes in
understanding the concept can be discovered and quickly corrected.

New methods for teaching the pumping lemma are considered. These allow stu-
dents to proceed at their own pace while learning about the pumping lemma through
interactive animations. These methods can be used to augment or replace traditional
teaching approaches. The pumping lemma animator will be included in an ongoing
project designed to create animations and interactive tools for a complete course on
theory of computing.
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INTRODUCTION

The pumping lemma for regular languages provides a characterization of regu-

lar languages and is generally used to prove that certain languages are not regular.

This lemma and its application are among the most challenging concepts students

encounter in a theory of computing course. In this thesis we describe software that

can be used by students to study the pumping lemma for regular languages in a vi-

sual, interactive fashion. We expect that students will be able to learn the pumping

lemma and its application more readily through the use of this software.

Designed as applets that run in standard web browsers, the software models for

the pumping lemma are also intended to be incorporated into a novel teaching and

learning resource entitled Theory of Computing: The Hypertextbook [1]. From the

paper Hypertextbooks by Dr. Ross comes the following description of a hypertextbook:

A hypertextbook is a comprehensive, web-based teaching and learning resource
that is intended to augment or supplant a traditional textbook for an academic
subject. [. . . ] Hypertextbooks extend the capabilities of traditional textbooks
tremendously in that, beyond mere textual presentations and static illustra-
tions, they can also incorporate video clips, audio files, and active links to
other material on the web. They can be arranged (through the use of hy-
perlinks) to accommodate various teaching/learning needs and styles. Most
unique, though, is their capacity for including active learning modules in the
form of interactive applets that animate important concepts and engage stu-
dents in exploratory learning. [2]

Theory of Computing: The Hypertextbook is proposed to be the first working

example of the hypertextbook concept. In addition to traditional text presentations

of the material, this hypertextbook will illustrate the key concepts of the theory of
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computing through liberal use of interactive applets. Many of the concepts in a theory

course have traditionally been poorly served by paper textbooks since many of these

concepts are dynamic, but must be presented in static form in a traditional textbook.

The pumping lemma animator software of this thesis will become part of Theory of

Computing: The Hypertextbook.

Visualization software has been used successfully in other subjects in computer

science [3, 4, 5] and in other disciplines. For example, the Virtual Labs Project in the

Stanford University School of Medicine has been using learning modules in cardio-

vascular, gastrointestinal, respiratory, renal, visual, and neurophysiological systems

for the past four years. These modules include simulations and interactive games

to reinforce concepts being learned. Reaction from students and faculty has been

positive [6].

In chapter 2 of the thesis, we discuss previous work upon which this thesis is based

and similar efforts completed by others. This is followed in chapter 3 by a detailed

discussion of the pumping lemma for regular languages. Then, in chapter 4 the

software developed as part of this thesis for teaching and learning the pumping lemma

is presented at length. This is followed by a discussion of evaluation in chapter 5.

Finally, in chapter 6 we draw conclusions and outline future work.

We assume throughout that readers are familiar with theory of computing con-

cepts, including the terminology and definitions of finite state automata, regular

languages, regular expressions and the pumping lemma for regular languages. These
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concepts can be found in introductory textbooks on the theory of computing (for

example, see [7]). In this thesis literal symbols will be displayed with a typewriter

font (e.g. abcd) to differentiate them.
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PREVIOUS WORK

Webworks FSA Animator

The Webworks Finite State Automaton (FSA) Animator is the precursor to this

project. Its purpose is to animate the running of a finite state automaton. It was

created by Michael Grinder [8, 9, 10]. The FSA animator is a Java applet that allows

a student to construct an FSA and then run that FSA on arbitrary strings. The

applet animates all aspects of the operation of the FSA as it executes. The FSA

animator also has an exercise feature. This allows a student’s created FSA to be

compared to a hidden, correct FSA given by an instructor. The comparison feature

checks whether the FSA created by the student correctly recognizes the language of

the exercise. The FSA animator supports both deterministic and nondeterministic

FSAs.

The FSA animator allows the graphical construction of an FSA using the mouse.

New states can be added and moved around. A transition is created by a click and

drag operation from a source state to a target state. Once a transition has been

created, it can be labeled with the symbols that cause the transition to occur.

As seen in figure 1, the FSA animator applet displays a virtual tape at the top

of the applet window that can hold a string to be processed by the automaton. The

FSA tape head is represented by a triangle that appears below the tape, underneath
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Figure 1. Michael Grinder’s FSA running.

the current input symbol. Figure 1 shows the configuration of the pictured FSA after

it has processed the leading 1 and 0 of the input string and is about to read the 0

directly above the input head triangle.

As the FSA runs, the current state is occupied by a red circle (there may be more

than one current state if the FSA is nondeterministic). The red circle moves from

state to state along the transition arrows as the machine steps through the symbols

on the tape under user control.

The FSA animator has been used in experiments to see if it has any effect on

student learning [8]. A control group was given FSA construction exercises without

access to the FSA animator. A target group used the FSA simulator to complete

the same set of exercises. The target group had a statistically significant higher

percentage of students able to complete a set of exercises correctly. However, there was
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no statistically significant difference in scores between the two groups in a subsequent

test given later. The author concluded that although more evaluation of the FSA

applet use was needed to determine the long-term effects on student learning, the

benefits seen in student motivation when the FSA applet was used made its use

worthwhile.

Grinder’s FSA applet formed the basis for the pumping lemma visualization ap-

plets developed for this thesis. Many enhancements and modifications were made

to the FSA applet so that it can illustrate the characteristics of FSAs upon which

the pumping lemma is based. In the remainder of the thesis we use the terms “FSA

animator” and “pumping animator” interchangeably as terms describing Grinder’s

FSA animator as enhanced by this author.

Dr. Susan Rodger’s PumpLemma

Dr. Susan Rodger, of Duke University, created visualization software called Pump-

Lemma to assist students in learning about the pumping lemma [11, 12]. It operates

by allowing students to type in a language such as a
n
2 bn; it then assists students as

they attempt to to check all the cases necessary (according to the pumping lemma for

regular languages) to prove that the language is not regular. Possible input languages

can be described by multiple base letters raised to various exponents.

Students use PumpLemma by specifying a language they wish to prove non-

regular. First, they enter some language, such as a
n
2 bn (see figure 2). Then, they
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Figure 2. PumpLemma in action.

specify a range for n, such as n > 0. Next, the program generates a list of the possible

values for the y portion of the string (recall that the pumping lemma requires breaking

a selected string in the language into an x prefix, a y substring and a z suffix such

that xyiz is in the language for all i ≥ 0). For the above language, there are three

possibilities: aG (where y lies entirely in the a portion of the string), bG (where y lies

entirely in the b portion of the string), aGbJ (where y lies across the a-b boundary in

the string) where G > 0 and J > 0. Next, each of those possibilities must be checked

by the student to see if it can be pumped.
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For example, for the y = bG case, the student supplies a
m
2 bh as the x portion, bj

as the y portion, and bm−h−j as the z portion. Then, the student specifies an i value

for the string xyiz to try to find a conflict. In this case, if i is 2, a conflict results

(the resulting string is not in the language since it has too many b’s), thus showing

that bG cannot be pumped.

After a conflict has been produced for each of the three cases y = aG, y = bG,

and y = aGbJ , the language has been shown to be non-regular. If a conflict is not

produced for every case, no conclusions can be drawn.

PumpLemma still must be used with other programs to be an effective learning

aid for the pumping lemma. PumpLemma is quite restricted with respect to the types

of languages that it allows as we quote from the documentation “language selection

is limited to ordered languages (i.e. anbn(ab)n, but not ‘the number of a’s equals

the number of b’s’)” [12]. If the language is originally given as a grammar or as an

informal description, the language must be converted by the student into the form

that PumpLemma requires.

An example language L is {x=y+z|x, y, and z are unsigned binary numbers and

x is the sum of y and z} which has the alphabet {0,1,=,+} (for example, 10=1+1 and

111=101+10 are in the language, but 111 and 10=10+10 are not). This language L

must be converted to a form that PumpLemma can recognize. As an example, a form

for L that could be used by PumpLemma is 10n=10n+0 (actually, it is a little worse,

since PumpLemma only allows symbols a-f in the alphabet; with that restriction, a
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form for language L acceptable to PumpLemma could be abncabndb, where a=“1”,

b=“0”, c=“=”, and d=“+”).

Consider string 10∗=10∗+0, which is written as a regular expression, so it is regular.

If language L is regular, then the intersection of languages L and 10∗=10∗+0 is regular

as well. The intersection of these two languages is the language 10n=10n+0. So, if

10n=10n+0 is not regular (and it is not regular), then language L is not regular. Using

this approach, PumpLemma can be used to prove language L is not regular, but to

do so requires extra knowledge.

PumpLemma is the only previously deployed software system known to the author

that seriously attempts to visualize the pumping lemma. While PumpLemma could

be quite useful for the purpose of teaching how to prove that a language is not regular,

the system seems to have fallen into disuse. PumpLemma has not been updated since

1997, and it no longer runs or compiles under current Java implementations. Several

modifications had to be made to allow it to be tested for this thesis. The modified

version was sent to Dr. Rodger.
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PUMPING LEMMA FOR REGULAR LANGUAGES

The pumping lemma for regular languages identifies some properties that all reg-

ular languages have. Since all regular languages have these properties, any language

that does not have these properties is not regular. The proof of the pumping lemma

is usually based on finite state automata (recall that any regular language can be

implemented by an FSA and any FSA can be converted into a regular language) [7].

There are various versions of the pumping lemma for regular languages. We call

the following the “standard version.”

Lemma 1. Let L be a regular language. Then there is a constant p (usually

referred to as the “pumping constant”) depending only on L such that if s is a string

in language L, and |s| ≥ p, then s can be divided into three substrings x, y, and z

such that s = xyz and:

1. |y| > 0;

2. |xy| ≤ p;

3. For each i ≥ 0, xyiz ∈ L.

The proof of this lemma follows from the fact that for each regular language,

there is an FSA M that recognizes it. If we let p be the number of states in M, then

for any string s in L of length greater than or equal to p, M must encounter some

state at least twice while parsing s. That is, when processing any string s in L that



11

has at least as many symbols in it as the number of states, p, in M, M will be forced

to visit at least one state at least twice. Some prefix x of s will lead M from the start

state to some state qj , some next portion y will lead M back to qj, and the suffix z

will lead M from state qj to some accept state. If the y portion of s is repeated, as

in xyyz, this new string will also be in the language since processing of the second y

portion will leave the machine in state qj. Furthermore, if the y portion is removed

from the string, yielding s′ = xz, s′ is also in the language since the x portion leaves

the machine in the qj state and the z portion takes the machine to an accept state

from qj .

Students must have a clear grasp of these insights in order to understand and

apply the standard version of the pumping lemma in a knowledgeable fashion. Un-

fortunately, it is likely that instructors of a theory of computing course usually do

not have enough time to spend in class to ensure that the average student does have

a clear understanding of the intuition behind the pumping lemma before moving on.

The pumping animator described in the next section is intended to alleviate this

problem.

We call the following the “generalized pumping lemma” for regular languages.

Lemma 2. Let L be a regular language. Then there is a constant p depending

only on L such that for any string s in L and for each way of partitioning s as s = uvw

such that |v| ≥ p, v can be further divided into three substrings x, y, and z such that

v = xyz and:
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1. |y| > 0;

2. |xy| ≤ p;

3. For each i ≥ 0, uxyizw ∈ L.

In order to help students grasp the intuition behind Lemmas 1 and 2, interactive

animation applets based on the FSA animator of Michael Grinder were developed.

We present these next.
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PUMPING LEMMA ANIMATOR

The pumping lemma animation applet described in this section is based on the

FSA animation applet of Michael Grinder [8]. The FSA Animator was modified to

incorporate new modes. These modes allow the applet to be used for a variety of new

purposes. Each mode emphasizes different properties of an FSA. Grinder’s original

mode as described in the chapter Previous Work, still runs, as do four other new

modes.

• The first new mode is the pumping classification mode. When running in this

mode, the animator will classify an input string into x, y, and z portions ac-

cording to Lemma 1.

• The second new mode is the substring pumping classification mode. This mode

classifies a selected substring of an input string into x, y, and z portions ac-

cording to Lemma 2.

• The third new mode is the loop display mode. This mode requires that a student

attempt to select a substring of the input string that leads the FSA through

a loop; the animator will then check whether this selected portion really does

lead the FSA through a loop.

• The last new mode is the repeat displayer, which displays states and transitions

differently depending on how many times each state or transition has been

visited as the input string is processed by the FSA.
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Figure 3. FSA before a repeat has been found.

Pumping Classification Animator

In the pumping classification mode, the animator automatically divides the input

string into x, y, and z portions according to Lemma 1 as it runs. Students can observe

where the first loop is encountered as the FSA being animated processes an input

string.

As the animator starts, it first colors all states and transitions black to show that

they are unvisited initially. As the input string is processed, the animator begins to

color each state and transition visited with the color used to highlight the x portion

(blue in figure 3) since these states and transitions are initially assumed to be part

of the x portion of the string. This early configuration can be seen in figure 3.

At some point during processing, either the string on the tape will be completely

processed, or a state will be repeated. The first time a repeated state is encountered
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Figure 4. FSA that has accepted.

will be used to determine the y portion of the input string. The animator then

properly recolors those states and transitions that form the loop traveled as the FSA

processed y a different color (red in figure 4). Depending on how the instructor

has initialized the program, the animator can either continue to check for repeated

instances of the identified loop, or just classify the rest of the string beyond the y

portion as the z portion.

After the machine has completed processing and accepting the input string, the

FSA will be colored as in figure 4. The states and transitions associated with the

x portion are colored blue, those with the loop corresponding to the y portion are

colored red, and those associated with z are colored green. Students can watch the

processing, including color changes, as the FSA processes the input string a symbol

at a time.
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In order to clarify the intuition behind Lemma 1, after processing of the input

string has completed, the input tape can be modified to remove the y portion. When

that is done, and the FSA is run again, the new string will be accepted as well. In the

process, a new y portion in the new string might be uncovered. That is, it is possible

that a substring causing a loop will be found in the new string from which the old y

has been removed. In fact, this is guaranteed to happen if the new string is still at

least as long as the number of states in the FSA. These steps can be repeated until

all loops have been eliminated.

The input tape can also be modified by the student to include a repeat of the y

portion (i.e., as xyyz), and the FSA can be run again to demonstrate that the newly

constructed string is also accepted and hence is in the language recognized by the

FSA.

In the standard pumping classification mode, the FSA animator always highlights

the first, shortest loop that is encountered (this is the only loop guaranteed to exist

by Lemma 1, although there may be others). Since the first, shortest loop can be

determined algorithmically and is the only loop guaranteed to exist by the pumping

lemma, it is the one displayed as the y portion. The full algorithm for doing this,

classify, is described later in this thesis.

The pumping classification mode can also be augmented by specifying a “y repeat

display parameter.” This causes the FSA animator to highlight repeated y portions

in the input string, rather than just the y portion causing the first loop. Thus when
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the animator is being used to illustrate that a single loop must always exist, then

the y portion repeats are hidden so as to make the output less confusing. When the

desire is to show that the y portion may repeat, the repeat display mode parameter

can be set to cause the animator to highlight all y repetitions.

Substring Pump Classification Animator

The substring pump classification animator mode uses the same general frame-

work as the pump classification animator mode, except that it allows the user to

select for classification a substring of the full string. This substring is then classified

into x, y, and z portions. This mode allows for exploration of the ramifications of the

generalized pumping lemma (Lemma 2) by checking that any selected substrings of

the proper length will cause the FSA to loop.

The student selects a substring by clicking and dragging the mouse below the tape

as shown in figure 5. The animation then will display a classification of the selected

substring as the entire input string is processed by the FSA (see figure 6). The

student-selected substring is treated as the v portion of the input string according to

Lemma 2; thus the selected substring, v, is further classified into x, y, and z portions

by the animator. By moving the substring selection around to different portions of

the input string, a student can explore the concept that any substring of proper length

in the input string will cause the FSA to loop.
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Figure 5. FSA with a substring being selected.

Figure 6. FSA classifying a substring.
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Loop Displayer

For most input strings the FSA processing those strings will encounter more loops

than just the first, shortest loop. The loop display mode is used for exploring all the

substrings of an input string that will cause the FSA to loop. A loop displayer

component keeps track of loop-causing substrings in the input string.

Like the substring pumping classification mode, the loop display mode allows

arbitrary substrings of the input string to be selected, but this time for a different

purpose. When a substring is selected in loop display mode, the animator will check

to see if that substring does indeed cause a loop. If the substring causes a loop, the

animator will underline it with green, and if not, the animator will underline it with

red. As the FSA processes the selected substring, the animator colors the states and

transitions visited green. This allows the path taken by the FSA as it processes the

selected substring to be easily seen. If this path is a true loop, the highlighted path

beginning and ending states will be the same, as shown in figure 7. If the highlighted

path beginning and ending state are different, this implies that the selected substring

does not represent a loop in the FSA. The coloring will make this obvious, as shown

in figure 8.

The loop displayer can be set to uncover all the loops in a given string, as displayed

in figure 9. Unlike the pumping classification modes, the loop display mode will find

all the loops in an input string, not just the first, shortest loop. The algorithm for

doing this first generates the sequence of states that are visited as the input string is
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Figure 7. FSA displaying a true loop.

Figure 8. FSA displaying a false loop.
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Figure 9. FSA displaying all the loops.

processed. Then, for each state in the sequence the algorithm examines all the states

after that state in the sequence. If the selected state reappears later in the sequence,

the substring that takes the FSA from the selected state to the repeated occurrence

of that state is added to the list of loop-causing substrings. Thus, all the loop-causing

substrings for the input string are found.

The loop display mode can be set so that the loop displayer presents one of three

different levels of information to students using the animator:

Show loops — In this mode the displayer shows all the substrings that cause loops
that exist for the displayed FSA and the current input string.

Show number — In this mode the displayer only shows how many substrings there
are that cause loops and those that have been discovered already (i.e., students
can be required to identify loop-causing substrings of the input string on their
own).

Show nothing — In this mode the displayer only shows the loop-causing substrings
that have been already discovered by a student and whether or not all such
substrings have been found.
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Repeat Displayer

The FSA Animator can be set to repeat display mode. In this mode, states

and transitions are highlighted in one color as they are first encountered. When a

state or transition is repeated, it is highlighted differently. This is implemented by

keeping a “touch” count for each transition and state. When the FSA first starts

processing, the touch count is set to zero for all states and transitions. Each time

a state or transition is encountered during processing of the input string, the touch

count for that state or transition is incremented by one. The highlighting of states

and transitions is updated based on the current touch count.

States and transitions are colored in three different ways. When they are un-

touched, the transition arrows and states are thin and black. As they are touched,

the lines used to draw them get thicker and the color changes (the change in thickness

should help students who are color blind). This is shown in figure 10.

Use of the Pumping Animator

There are a variety of ways that the pumping animator can be used for teaching

and learning depending on the needs of the instructor or student. Some of them are

not even be directly related to the pumping lemma. For example, the loop display

mode might be used for a lesson about how an FSA recognizes an infinite language.
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Figure 10. FSA in repeat mode.

With respect to learning the pumping lemma, a variety of concepts must be

mastered. The pumping animator modes are designed to help students learn these

concepts as active participants in the process. These concepts include:

• How states and transitions are visited, or touched, as an input string is pro-

cessed.

• That sufficiently long input strings guarantee that the FSA will have to touch

at least one state more than once.

• How to identify substrings of an input string that cause the FSA to loop while

processing the input string.

• Recognizing that loop substrings of the input string can be removed or repeated,

resulting in new strings that the FSA accepts.

• How to identify the x, y, and z portions of an input string of sufficient length

according to Lemma 1.
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• How to identify the u,v, and w portions of an input string, and then the x, y,

and z portions of v, in an input string of sufficient length according to Lemma

2.

How these concepts can be learned through the use of the pumping animator is

explored below.

States and transitions visited

A concept to learn early is that states and transitions are touched as input string

processing occurs. Repeat mode can demonstrate this. The student runs a provided

FSA in repeat mode and as the FSA processes the input string, touched states are

colored differently (see figure 10). This visually shows which states and transitions

are visited. Students can enter different input strings for processing. Examples can

be given that demonstrate that not all states will necessarily be touched for certain

FSA-input string pairs. Exercises that have students supply input strings for provided

FSAs that cause certain states to be touched can also be assigned to help students

learn this concept.

States will be repeated with long input
strings

The observation that sufficiently long input strings will force an FSA to loop can

be demonstrated with the repeat mode by using a variety of strings with different

lengths and FSAs that recognize infinite languages. The longer input strings (longer
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than the number of states) will demonstrate that for sufficiently long strings, states

will be repeated as the FSA processes the string.

For certain kinds of FSAs, students will also learn that input strings shorter than

the number of states may force the FSA to loop. For other kinds of FSAs, students

will learn that only strings as long as the number of states guarantee that the FSA

will loop. Students will also learn that there is always at least one string that will

cause the FSA to accept without any loops (as long as the FSA recognizes more than

the empty language). These observations will help students understand that for every

FSA which accepts an infinite language, there is some length of input string that will

guarantee that the FSA has a loop. This length may be less than the number of

states, but it will never be more than the number of states.

Students can try many input strings on their own to explore all of these issues in

assigned exercises. Since all activity of the FSA is being shown in the applet, students

will be able to gain a clear understanding of these issues.

Loop-causing substring detection

The third concept useful for understanding the pumping lemma is identification

of substrings of an input string that cause an FSA to loop, which loop mode can

demonstrate. Recall that the loop mode of the pumping animator has modes that

can (1) list for the student all substrings of an input string that cause loops, (2)

give the number of substrings that cause loops (but not list them), and (3) not list

any information about the loop-causing substrings or their number. Students can
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use version 1 to see how loop substrings are identified and then versions 2 and 3 to

try to find the substrings that cause loops on their own. When the students select

substrings in this mode they can watch as the FSA processes the whole input string

to see whether their selected substring really does cause a loop. This demonstrates

the idea of loops, preparing students to examine the effect of loops on the language

that an FSA accepts.

Loop effect on language

The loop mode and the pumping mode together can be used to learn how loop-

causing substrings can be used to construct new strings that an FSA accepts. First,

a loop-causing substring can be identified by a student using the animator either in

loop mode or pumping mode. Then, the student can create new input strings that

are identical to the original input string except that the loop-causing substring is

either omitted or repeated one or more times in the new string (e.g. if the loop-

causing substring is bc in the input string abcd then new strings accepted by the

FSA include ad, abcbcd, abcbcbcd, . . . ). These new strings can be input to the same

FSA and the student can verify that the FSA accepts these new strings.

Classification of an input string

The last concept that is helpful for students learning the pumping lemma is how

to classify an input string into the x portion, y portion, and z portion according to

Lemma 1. Once the concept of loops is understood, this is relatively easy to learn.



27

The pumping mode is used, which allows the student to see how—in any sufficiently

long string—the x portion, the y portion and the z portion are found. Similarly, with

respect to Lemma 2, students can identify any substring of sufficient length in the

input string and determine how to find the x, y, and z portions of that substring.

Applying the Pumping Lemma

Exploring these five concepts helps students achieve an intuitive understanding

of the pumping lemma. However, students must still learn how to apply this lemma.

For example, consider the language L ={anbn|n ≥ 0}. This language is not regular,

so there is no FSA that recognizes it. There are several methods that can be used to

try to build an FSA that recognizes the language L. The instructor can show various

attempts and explain why they fail, and the students can make their own attempts

and discover why they fail.

There are two categories of attempts. The first category consists of FSAs that

do not have any cycles in the graph of the transitions reachable on a path from the

start state to an accept state (i.e., there are no input strings that will cause a loop).

These attempts will fail because these types of FSA only recognize finite languages.

The second category consists of FSAs with loops, which will fail to recognize

language L. If one gives such an FSA purported to recognize language L a sufficiently

long input string, say apbp where p is the number of states in the FSA, a loop will

occur as the FSA processes the a’s. For example, if the FSA has ten states, then

p = 10 for this FSA and the string apbp has ten a’s, so the FSA will loop while still
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processing the a’s. Since the substring causing the loop can be omitted to create a

new string that the FSA must accept, the FSA will accept some string ap−kbp (where

k is the length of the loop-causing substring), which is not in language L.

Once students begin to see that any attempt to construct an FSA to recognize lan-

guage L (or similar languages that are not regular) will fail (and why), they will have

a firm foundation for understanding and applying the two versions of the pumping

lemma (Lemma 1 and Lemma 2). That is, once the intuition acquired by exploring the

pumping lemma is internalized by students through use of the various modes of the

pumping animator, proving that a language is not regular using the abstract versions

of the pumping lemma (Lemma 1 and Lemma 2) will be more easily understood.

The Classify Algorithm

Algorithm classify treats all input strings s, as having the form s = uvw.

Classify then classifies the v portion of an input string into v = xyz, where y is

the substring that causes the corresponding FSA to loop according to either Lemma

1 or Lemma 2. For a string s being classified according to Lemma 1, u and w are

considered to be empty (i.e., s = v = xyz). For a string s being classified according

to Lemma 2, u and w may be nonempty and the x, y, and z portions are in the v

part of the string (i.e., s = uvw and v = xyz). The classify algorithm takes as its

input a list of the states that have been encountered, the length of the u portion of

the string and the length of the v portion of the string.
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Classify is called each time the FSA processes a symbol in the input string. The

next state is passed to classify, which maintains a list that contains a “classification”

for each state encountered. When substring v is reached, classify factors v into x,

y, and z portions. It does this by creating a dictionary that is keyed on the state and

has as a value the index (i.e., the location in the input string) at which the state was

touched. Classify thus continues to processes the v portion of the input string as

long as no state is repeated (which can be checked by searching the dictionary). That

is, each symbol of v is classified as part of the x portion, until a repeated state is

found or the v portion is done. If a repeated state is found, then the index associated

with the previous location when the state was touched is looked up in the dictionary.

The substring consisting of the symbols in the input string from that index location

to the current index location is reclassified to be the y portion.

Next, the algorithm checks for successive repeats of the y portion in the input

string. If all the states encountered when processing the y portion immediately repeat

in the same order as processing of v continues, a “y repeat” has been found (more

than one y repeat may be found). When a mismatch is found, the rest of the v portion

of the string is classified as z.

After the z portion has been determined, the rest is of the input string is labeled

as w. The pseudocode for classify appears in appendix A.

As classification of the input string occurs, all the states and transitions are

recolored as the new classification dictates. The y portion of the input string is given
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highest priority and once the states and transitions of the loop traversed as y is

processed are colored, this coloring remains even if any of these states or transitions

are also traversed later as a different part of the string is processed by the FSA.

Integrating the Animator into a Hypertextbook

The pumping animator has been designed to be integrated into Theory of Com-

puting: The Hypertextbook. The pump animator works well together with the other

animators already designed for use in a chapter on regular languages and finite state

automata, including deterministic and nondeterministic FSA applets, regular gram-

mar applets, and regular expression applets. Exercises and examples using the pump-

ing animator will be written for use in chapter 1 of the hypertextbook on regular

languages and finite state automata, primarily in a section on the pumping lemma

for regular languages.
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EVALUATION

The pump animator has yet to be evaluated. Formative evaluation is needed to

enhance the animator to better meet student needs, and summative evaluation is

needed to determine how much students benefit from using the animator.

Formative evaluations are most important for determining how lessons and anima-

tion tools can be improved. Formative evaluations can be done by soliciting feedback

from students and from observations made as students use the animators and associ-

ated lessons. These evaluations can be used to improve the animators’ usability and

effectiveness.

Summative evaluation requires different methods than formative evaluations. The

most important requirement is that there be a control group and a target group of

students to evaluate. For the purposes of this thesis the control group would be a

group of students who learn the pumping lemma through traditional lectures and

textbooks. The test group would use the pumping animator to learn the pumping

lemma. Comparison of learning between the control and test group would help estab-

lish whether the active learning pumping animator helped students learn the pumping

lemma better. Without the control group, it would be difficult to determine whether

the pumping animator aided student understanding of the pumping lemma.

It is important to have control and test groups of students who exhibit similar

capabilities. If the sample sizes are not large, it is probable that the students in the
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control and target groups will not be equal in average ability. If, for example, more

of the students in the control group already understand the concept being taught

than the students in the target group, learning test results will be biased. Pretests

can help resolve this problem if they clearly identify important differences between

the test and control groups. If significant differences are detected between the two

groups prior to the experiment, then a measure like average scores on the post-test

cannot be used. Instead, measurement of student improvement between pre-test and

post-test results can be used. This will measure whether the student’s understanding

of the concept being examined was increased during the experiment.

There are two problems with this approach, however. The first, for example, is

that two different one-point improvements may not be the same. For instance, it

might be easy to get from a score of 5 to a score of 6, but it might be hard to get

from a score of 9 to a score of 10. This needs to be considered when analyzing the

score improvements. The second is that the pre-test itself may prime students to

focus on the concepts that they are expected to learn in the experiment, as pointed

out by Hundhausen, Douglas and Stasko [4]. However, the advantage remains that

testing for improvement more accurately measures whether learning takes place dur-

ing an experiment. Experiments that have incorporated this approach have identified

differences in learning between the control and target groups more often [4]. When

carefully done, summative evaluations will return useful results.
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Summative evaluations are needed to find answers to some interesting questions

about the use of the pumping animator. A key question that can be partially an-

swered is this: does use of an active learning animator for the pumping lemma (as

described in this thesis) improve student comprehension of the pumping lemma over

traditional approaches? To do an evaluation of this question a control group learning

with traditional resources would need to be compared to a test group that uses the

animation software in addition to traditional resources. To carry the experiment out,

a pretest on the pumping lemma would be given to both groups. Then, the control

group would be given a traditional lesson on the pumping lemma and would have

access to a traditional textbook. The experimental group would be given similar

treatment but, in addition, be required to use the pumping animator to learn about

the pumping lemma. Afterwards, both groups would be given a post test on pumping

lemma concepts (see appendix C for a sample test). The scores on the pre- and post-

test for each group would then be compared to see if there is a statistically significant

difference in learning by one group over the other.

There are many other interesting questions that could be explored through sum-

mative evaluation, including:

• Do students use the animator software for self-learning during their free time?

• Does use of the animator help augment lectures?

• Does use of the animator work for learning by independent study?
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• Are students more excited and motivated about learning the pumping lemma

when active learning applets are used?
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CONCLUSIONS

As far as the author knows, the pumping animator presented in this thesis is the

first of its kind. It is expected to become a useful resource for teaching and learning

the pumping lemma for regular languages. The animator will play an important role

in Theory of Computing: The Hypertextbook.

This thesis has also identified a set of five concepts necessary for understanding

the pumping lemma. It was shown that the various modes of the pumping animator

can be used to help students learn these concepts. The pumping animator will be

integrated into the hypertextbook on the theory of computing to help students learn

the pumping lemma.

Future Directions

Two major things remain to be completed based on the work of this thesis: (1)

an extension to an active learning applet for helping students learn how to apply the

pumping lemma to show that a language is not regular, and (2) formal formative

and summative evaluations of the pumping animator. The first task will likely be

the subject of another thesis and will present interesting technical and intellectual

challenges. The second task can be carried out by instructors teaching the theory

of computing courses. Formative evaluations are certain to point out improvements

needed to the current pumping animator software.
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Some minor features that need to be added include an exercise mode to the

pumping classification mode and creating some tools to generate the HTML code

needed for embedding the applet in a webpage.

This work will continue with the ongoing construction of Theory of Computing:

The Hypertextbook, as it is extended into a complete teaching and learning resource

covering a standard course on the theory of computing.
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APPENDIX A

Pseudocode for the Classify Algorithm
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This is a pseudocode description of the classify algorithm. It is presented as

pseudocode instead of Java code because the pseudocode is more compact and easier

to understand.

classify(states, lengthSymbols, lengthU, lengthV, checkYRpeats):

classification <- new list size lengthSymbols

classification[0 .. min(lengthSymbols,lengthU)] <- u

statesSeen <- new dictionary

lengthV <- min(lengthV,lengthSymbols - lengthU)

index <- lengthU

while(index < lengthU + lengthV

and not statesSeen.contains(states[index])):

classification[index] <- x

statesSeen.add(states[index],index)

index <- index + 1

if(index < length(states)

and statesSeen.contains(states[index])):

startIndex <- statesSeen[states[index]]

classification[startIndex .. index] <- y

afterIndex <- index

if(checkYRepeats):

yLength = index - startIndex

count = 1

while(statesSeen[startIndex .. index]

= statesSeen[startIndex + count*yLength

.. index + count*yLength]):

statesSeen[startIndex + count*yLength

.. index + count*yLength] <- y count

count <- count + 1

afterIndex <- startIndex + count*yLength

classification[afterIndex .. lengthU + lengthV] <- z

classification[lengthU + lengthV .. lengthSymbols] <- w

return classification
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APPENDIX B

Mode Documentation
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Pumping Animator Modes

The pumping animator uses various modes to run. The primary modes are spec-

ified in the Mode parameter passed to the applet, which can take on the following

values:

compare — This is the mode of Grinder’s original FSA animator. In this mode, the
FSA that a student builds can be compared to a hidden, correct FSA that an
instructor created.

pumping — This mode shows the pumping classification on the input string.

pumpingsubstring — This mode shows the pumping classification on a substring
of the input. In contrast to the pumping mode, this mode allows different
substrings to be selected for pumping analysis.

repeat — This mode will color the states and the transitions based on the number
of times that the state or transition has been touched as the input string is
processed.

loop — This mode will identify the substrings of the input string that cause the
FSA to loop.

Secondary Mode Parameters

Some of the primary modes have secondary modes. When using loop mode there

are several possible ways of doing loop mode that are selected with the parameter

LoopHints. LoopHints can have the following values:

no — No loop information is displayed, except whether all substrings causing loops
have been found by the student.

number — The number of substring causing loops is displayed, but not the sub-
strings themselves until they are identified by the student.

show — All substrings causing loops are displayed.
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The pumping modes also have a YRepeats parameter that determines whether

or not y-repeats are to be displayed. If the value of YRepeats is true, then y-repeats

will be displayed.

General Parameters

There are several setup parameters for the pumping animator. These setup pa-

rameters are:

FSAFile — The filename of the FSA XML file that is initially loaded when the
applet starts.

TargetFile — The filename of the FSA XML file that is used to compare against the
FSA the student creates. This FSA is hidden from the student.

Tape — The value of the initial string that is placed on the tape.

Using Parameters

The parameters can be transmitted to the pumping animator in three differ-

ent ways. First, they can be passed (with the exception of FSAFile and Target-

File) on the command line to the application (e.g., Mode=pumping). Second, they

can be passed to the applet as attributes in the embed tag (e.g., Mode=pumping).

Third, when using the applet tag, they can be passed with the tag param (e.g.,

<param name="Mode" value="pumping" />).
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APPENDIX C

Evaluation Test
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Sample questions for Pre and Post-test

1. Notice that the string abcd is accepted by the FSA depicted below. What

portion of the string abcd can be repeated such that the resulting string will

also be accepted by this FSA:

a d

b c

2. Find all the substrings of the string abcbcd that force a loop when it is run on

the above FSA.

3. Formally prove that the language {anbmcn|n, m ≥ 0} is not regular.

4. How would you prove that the language of strings that have the same number

of 01’s as 10’s is regular or not?

5. Prove that the language in the previous question is regular, or prove that it is

not regular.

6. Prove that the language {anbm|n, m ≥ 0} is regular.

7. You meet a person named Bill on internet chat who claims to have a four-state

FSA that can recognize the language {anb2n|n > 0}. Bill will not show the
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FSA to you, but will give the FSA to Trent (whom both Bill and you trust),

and Trent will run any strings that you send him and report whether Bill’s FSA

accepts or rejects the strings. What strings will you give to Trent and why?


