
Marbles Operation and Theory Manual

Joshua J. Cogliati and Abderrafi M. Ougouag

February 24, 2013

Chapter 1

Overview of Marbles

The Marbles code is a computer program designed to simulation the motion,
packing and vibration of spheres that undergo various mechanical forces includ-
ing gravitation, Hooke’s law force and various friction forces. The frictional
forces include true static friction that allows non-zero angles of repose. Each
sphere is individually simulated using the distinct element method.

1

Chapter 2

Overview of Running
Marbles

Running Marbles generally requires three things. First is the geometry specifi-
cation that describes the arrangement of the container for the vessel. Next is
any type of motion inducing parameters such as an earthquake simulation or
recirculation of the marbles. Last are the tallies of variables that are desired.
Sometimes multiple simulations are chained together manually, for example a
recirculation that outputs the save data followed by a second run of Marbles
that loads the data and simulates an earthquake.

Several simulation types that are supported by Marbles. The first is simula-
tions to determine the effects and parameters of the recirculation. The second
is to investigate packing arrangements of the spheres. The third is to simulate
the effects of vibration motion on the vessel. For all of these, a variety of tally
types are provided including dust production estimation, force tallying, velocity
tallying and also the raw position data is available.

2

Chapter 3

Theory

3.1 Overview of History of granular and Sphere
simulation

A variety of simulations of the motion of discrete elements have been created
for different purposes. Lu, Abdou and Ying applied a discrete element method
(DEM) to determine the characteristics of packed beds used as fusion reactor
blankets[?]. Jullien, Pavlovitch and Meakin used a DEM to determine packing
fractions for spheres using different non-motion methods[?]. Soppe used a rain
method (lower spheres down until they reach other ones) to determine pore
structures in different sized spheres[?]. Freund et al. used a rain method for
fluid flow for chemical processing[?].

Kohring created a 3-D discrete element method simulation to study diffu-
sional mixing and provided the time derivatives for the simulation, but not the
details of the calculation of static friction[?]. Haile discusses both how to sim-
ulate hard spheres (which is impractical for many Marbles simulations due to
the frequent and continuous contact between spheres) and soft spheres using
just the potential energy which is insufficient for modeling the motion[?]. The
dissertation by Ristow described multiple methods for simulation of granular
materials. On Ristow’s list was a model similar to that used in the preliminary
work supporting this proposal. Ristow’s dissertation provided an overview of
simulating static friction[?]. Vu-Quoc and Zhang created a model for parti-
cle flow simulations which was used for simulation of particle flow in chutes[?].
Their model included a detailed description of static friction calculation that
was computationally tractable yet still based on the complete and complicated
friction model of Mindlin and Deresiewicz[?]. To determine particle flows, Wait
developed a discrete element method which included dynamic friction, but the
model did not include static friction[?]. Multiple other discrete element codes
have been created, and Marbles is similar to several of the full motion models.

3

3.2 Methods of simulation of dynamic effects

The Marbles simulation tracks each individual sphere’s velocity, position, an-
gular velocity and static friction loadings. The following classical mechanics
differential equations are used for calculating the time derivatives of those vari-
ables:

dvi

dt
=
mig +

∑
i 6=j Fij + Fci

mi
(3.1)

dpi

dt
= vi (3.2)

dωi

dt
=

∑
i6=j F‖ij × rin̂ij + F‖ci × rin̂ci

Ii
(3.3)

dsij

dt
= S(F⊥ij ,vi,vj ,pi,pj , sij) (3.4)

where Fij is the force from sphere j on sphere i, Fci is the force of the container
on sphere i, g is the gravitational acceleration constant, mi is the mass of sphere
i, vi is the velocity of sphere i, pi is the position vector for sphere i, ωi is the
angular velocity of sphere i, F‖ij is the tangential force between spheres i and
j, F⊥ij is the perpendicular force between spheres i and j, ri is the radius of
sphere i, Ii is the moment of inertia for sphere i, F‖ci is the tangential force of
the container on sphere i, n̂ci is the unit vector normal to the container wall
on sphere i, n̂ij is the unit vector pointing from the position of sphere i to that
of sphere j, sij is the current static friction loading between spheres i and j,
and S is the function to compute the change in the static friction loading. The
static friction model contributes to the F‖ij term which is also part of the Fij

term. Figure ?? illustrates the principal vectors with sphere i going in the vi

direction and rotating around the ωi axis, and sphere j going in the vj direction
and rotating around the ωj axis.

The mass and moment of inertia are calculated assuming spherical symmetry
and allowing for the spheres to have a different density in an inner spherical core.
With this assumption the following equations hold:

m =
4
3
π
[
ρcr

3
c + ρo(r3o − r3c)

]
(3.5)

I =
8
15
π
[
ρcr

5
c + ρo(r5o − r5c)

]
(3.6)

where rc is the radius of inner zone of the sphere, ro is the radius of whole
sphere, ρc is the average density of center region and ρo is the average density of
outer region. For example, a tennis ball would have an effectively zero density
center region since they are hollow.

The dynamic (or kinetic) friction model is based on the model described
by Wait[?]. Wait’s and Marbles model calculates the dynamic friction using

4

Figure 3.1: Principle Vectors in the Interaction of Two Spheres

a combination of the relative velocities and pressure between the spheres, as
shown in Equations (??) and (??):

F⊥ij = hlijn̂ij − C⊥v⊥ij , lij > 0 (3.7)
Fd‖ij = −min(µ|F⊥ij |, C‖|v‖ij |)v̂‖ij , lij > 0 (3.8)

where C‖ is the tangential dashpot constant, C⊥ is the normal dashpot
constant, F⊥ij is the normal force between spheres i and j, Fd‖ij is the tangential
dynamic friction force between spheres i and j, h is the normal Hooke’s law
constant, lij is the overlap between spheres i and j, v‖ij is the component of
the velocity between two spheres perpendicular to the line joining their centers,
v⊥ij is the component of the velocity between two spheres parallel to the line
joining their centers, vij is the relative velocity between spheres i and j and µ is
the kinetic friction coefficient. Equations (??-??) relate supplemental variables
to the primary variables:

Fij = F⊥ij + F‖ij (3.9)
v⊥ij = (vij · n̂ij)n̂ij (3.10)
v‖ij = vij − v⊥ij (3.11)
vij = (vi + ωi × rin̂ij)− (vj + ωj × rjn̂ji) (3.12)

The friction force is then bounded by the friction coefficient and the normal
force, to prevent it from being too great:

5

Ff‖ij = Fs‖ij + Fd‖ij (3.13)

F‖ij = min(µ|F⊥ij |, |Ff‖ij |)F̂f‖ij (3.14)

where Fs‖ij is the static friction force between spheres i and j, Fd‖ij is the
kinetic friction force between spheres i and j, hs is the coefficient for force from
slip, sij is the slip distance perpendicular to the normal force between spheres
i and j, vmax is the maximum velocity under which static friction is allowed to
operate, and µ is the static friction coefficient when the velocity is less than vmax

and the kinetic friction coefficient when the velocity is greater. These equations
fully enforces the first requirement of a static friction method, |Fs| ≤ µ|F⊥|.

3.3 Integration

When all the position, linear velocity, angular velocity and slips are combined
into a vector y, the whole computation can be written as a differential formu-
lation in the form:

y′ = f(t,y) (3.15)
y(t0) = y0 (3.16)

This can be solved by a variety of methods with the simplest being Euler’s
method:

y1 = y0 + ∆tf(t,y0) (3.17)

In addition, both the Runge-Kutta method and the Adams-Moulton method
can be used for solving this equation. These methods improve the accuracy of
the simulation. However, they do not improve the wall-clock time at the lowest
stable simulation, since the additional time required for computation negates the
advantage of being able to use somewhat longer time-steps. In addition, when
running on a cluster, more data needs to be transferred since the methods allow
non-contacting spheres to affect each other in a single ‘time-step calculation’.

3.4 Geometry equations

For any geometry interaction, two things need to be calculated, the overlap
distance l (or, technically, the mutual approach of distant points) and the normal
to the surface n̂. The input is the radius of the sphere r and the position of the
sphere, p with components px, py, and pz

For the floor contact this is:

6

l = (pz − r)− floor location (3.18)
n̂ = ẑ (3.19)

For cylinder contact on the inside of a cylinder this is:

pr =
√

p2
x + p2

y (3.20)

l = (pr + r)− cylinder radius (3.21)

n̂ =
−px

pr
x̂+
−py

pr
ŷ (3.22)

For cylinder contact on the outside of a cylinder this is:

pr =
√

p2
x + p2

y (3.23)

l = cylinder radius+ r − pr (3.24)

n̂ =
px

pr
x̂+

py

pr
ŷ (3.25)

For contact on the inside of a cone defined by the radius = mz + b:

pr =
√

p2
x + p2

y (3.26)

zc =
m(pr − b) + z

m2 + 1
(3.27)

rc = mzc + b (3.28)
xc = (rc/pr)py (3.29)
yc = (rc/pr)px (3.30)
c = xcx̂+ ycŷ + zcẑ (3.31)
d = p− c (3.32)
l = |d|+ r, rc < pr (3.33)

n̂ = −d̂, rc < pr (3.34)
l = r − |d|, rc >= pr (3.35)

n̂ = d̂, rc >= pr (3.36)

These equations are derived from minimizing the distance between the con-
tact point c and the sphere position p.

For contact on a plane defined by ax+ by + cz + d = 0 where the equation
has been normalized so that a2 + b2 + c2 = 1, the following is used:

7

dp = apx + bpy + cpz + d (3.37)
l = r − dp (3.38)
n̂ = ax̂+ bŷ + cẑ (3.39)

3.5 Simulation of Static Friction

The static friction model has two key tasks: the force from stuck slip must be
updated based on relative motion of the spheres, and the current direction of
the force must be calculated, since the spheres can rotate in space.

3.5.1 Use of Parallel Velocity for Slip Updating

The true method for updating the stuck slip force of elastic spheres is to use
the R. D. Mindlin and H. Deresiewicz method[?], which requires computation-
ally and memory intensive calculations to track the forces. However, a simpler
method described by Cundall and Strack[?], uses the integration of the parallel
relative velocity as the displacement, is used to approximate the force. The
essential idea is that the farther the spheres have stuck slipped at the contact
point, the greater the counteracting static friction force needs to be. This is
what happens under more accurate models such as Mindlin and Deresiewicz.
This assumption imposes two approximations: (1) the amount that the force
changes is independent of the normal force, (2) the true hysteretic effects, which
depend on loading history details, are ignored. For simulations where the exact
dynamics of static friction are important, these could potentially be serious er-
rors. However, since static friction only occurs when the relative speed is low,
the dynamics of the simulation are usually unimportant. Thus, for most cir-
cumstances, the approximation that can be used to describe the rate of change
of the magnitude and non-rotational change of the stuck slip is

dsij

dt
= v‖ij . (3.40)

Vu-Quoc, Zhang, and Walton developed a 3-D discrete-element method for
granular flows[?]. They used a simplification of the Mindlin and Deresiewicz
model for calculating the stuck slip magnitude, and projected the stuck slip
onto the tangent plane for each time step to rotate the stuck slip force direction.
This correctly rotates the stuck slip, but requires that the rotation of the stuck
slip be done as a separate step since this is not written in a differential form.

Silbert et al. describe a 3-D differential version of the Cundall and Strack
method[?, ?]. The literature states that particle wall interactions are done iden-
tically to the particle-to-particle interactions (with no derivation or justification
provided). The amount of computation of the model is less than the Vu-Quoc,
Zhang, and Walton model. This model was used to model pebble bed flow[?, ?].

8

3.5.2 Rotation of Stuck Slip

The static friction force must also be rotated so that it is in the plane of contact
between the two spheres. When there is a difference between the spheres’ center
velocities, which changes in the relative sphere center location, change in the
direction in the stuck-slip occurs. That is:

pin+1 − pjn+1 ≈ pin − pjn + (vin − vjn)∆t (3.41)

First, let nijn = pi−pj and dnijn = vi−vj . The cross product−dnijn×nijn

is perpendicular to both n and dn and signed to create the axis around which
s is rotated in a right-handed direction. Then, using the cross product of the
axis and s, −(dnij × nijn) × sijn gives the correct direction that s should be
increased.

Next, determine the factors required to make the differential the proper
length. By cross product laws,

| − (dnij × nijn)× sijn| = |dnij ||nijn||sijn| sin θ sinφ (3.42)

where θ is the angle between nijn and dnij, and φ is the angle between dnij×nijn

and sijn. The relevant vectors are shown in Figure ??.

ndnΔt

n+dnΔt

s

s'

α'

α
θ

dsΔt

Figure 3.2: Static Friction Vectors

The goal is to rotate s by angle α′, which is the ‘projection’ into the proper
plane of angle α that n rotates by. Since the direction has been determined,
for simplicity the figure leaves the indexes off, and concentrates on determining
the lengths. In Figure ??, s is the old slip vector, s′ is the new slip vector, n
is the vector pointing from one sphere to another. The vector dn∆t is added
to n to get the new n′, n + dn∆t. The initial condition is that s and n are
perpendicular. The final conditions are that s′ and n′ are perpendicular, and
that s and s′ are the same length and that s′ is the closest vector to s as it can
be while satisfying the other conditions. There is no requirement that s or s′
are coplanar with dn∆t (otherwise α′ would be equal to α). From the law of
sines we have:

|dn∆t|
sinα

=
|n|

sin θ
(3.43)

9

so

sinα =
|dn∆t| sin θ
|n|

. (3.44)

The projection to the correct plane occurs in Figure ??. First, by using φ,
the length of s is projected to the plane. Note that φ is the angle both to s and
to s′. So, the length of the line on the dn×n plane is |s|sinφ, and the length of
the straight line at the end of the triangle is |s| sinφ sinα (note that the chord
length is |s|(sinφ)α, but as ∆t approaches 0 the other can be used). From
these calculations, the length of the ds∆t can be calculated with the following
formula:

ds∆t =
|s| sinφ|dn∆t| sin θ

|n|
. (3.45)

Since | − (dnij × nijn) × sijn| = |dnij ||nijn||sijn| sin θ sinφ, the formula for
the rotation is

sijn+1 = − (dnijn × nijn)× sijn

n2
∆t+ sijn. (3.46)

dn⨯n

sϕ

|s|sinϕ
|s|sin ϕ

α

|s|sin Φ sin α

Figure 3.3: Projections to ds

As a differential equation this is

dsij

dt
= − [((vi − vj)× (pi − pj))× sij]

|pi − pj |2
. (3.47)

By the vector property a×(b×c) = b(a ·c)−c(a ·b) and, since (pi−pj) ·sij = 0,
this can be rewritten per the version in Silbert et al. as

dsij

dt
= − (pi − pj)(sij · (vi − vj))

|pi − pj |2
. (3.48)

10

Differential Equation for Surface Slip Rotating

It might seem that the wall interaction could be modeled the same way as
the sphere-to-sphere interaction. For sufficiently simple wall geometries this
may be possible, but more complicated vessel geometries violate some of the
assumptions that underpin the derivation. For a flat surface, there is no rotation,
so the formula can be entirely dropped. For a spherical surface, it would be
possible to measure the curvature at sphere to surface contact point in the
direction of relative velocity to the surface. This curvature could then be used
as an effective radius in the sphere-to-sphere formulas.

Vessel walls allowed in Marbles can have additional features that violate
assumptions made for the derivation. For surfaces such as a cone, the curvature
is not in general constant, because the path can follow elliptical curves. As
well, the curvature has discontinuities where different parts of the vessel join
together (for example, in a transition from the outlet cone to the outlet chute).
At these transitions, the assumption that the slip stays parallel to the surface
fails because the slip is parallel to the old surface, but the new surface has a
different normal.

The Marbles code uses an approximation of the rotation delta to deal with
complications with using the sphere-to-sphere interaction. This is similar to
the Vu-Quoc et al[?]. method of adjusting the slip so that it is parallel to the
surface each time. Every time the slip is used, a temporary version properly
aligned to the surface is computed and used for the force. When the derivatives
are calculated, a rotation to move the slip to be more parallel to the surface is
computed as described in the next paragraph.

The rotation is computed as follows. Let the normal direction of the wall at
the point of contact of the sphere be n, and the old stuck-slip be s. Let a be
the angle between n and s. n× s is perpendicular to both n and s and so this
cross product is the axis that needs to be rotated around. Then (n × s) × s is
perpendicular to this vector, so it is either pointing directly towards n if a is
acute or directly away from n if a is obtuse. To obtain the correct direction,
this vector is multiplied by the scalar s ·n which has the correct sign from cos a.
The magnitude of (s ·n)[(n× s)× s] needs to be determined for reasonableness.
We define the angle b, which is between (n × s) and s. By these definitions
the magnitude is (|s||n| cos a)[(|n||s| sin a)|s| sin b]. b is a right angle since n× s
is perpendicular to s, so sin b = 1. Collecting terms gives the magnitude as
|s|3|n|2 cos a sin a which is divided by |n × s||n||s| to give the full term the
magnitude |s| cos a. This is the length of the vector that goes from s to the
plane perpendicular to n. This produces Equation ??, which can be used to
ensure that the wall stuck-slip vector rotates towards the correct direction.

ds
dt

= (s · n)
[(n× s)× s]
|n× s||n||s|

(3.49)

11

an

s

old s

Figure 3.4: Static friction vectors for wall

3.5.3 Use of Slip

The value of the slip is used to calculate the force of static friction as in

Fs‖ij = −hssij , |vv‖ij | < vmax. (3.50)

The friction force is then bounded by the friction coefficient and the normal
force, to prevent it from being too great as

Ff‖ij = Fs‖ij + Fd‖ij (3.51)

and
F‖ij = min(µ|F⊥ij |, |Ff‖ij |)F̂f‖ij (3.52)

where Fs‖ij is the static friction force between spheres i and j, Fd‖ij is the
kinetic friction force between spheres i and j, hs is the coefficient for force from
slip, sij is the slip distance perpendicular to the normal force between spheres
i and j, vmax is the maximum velocity under which static friction is allowed to
operate, and µ is the static friction coefficient when the velocity is less than vmax

and the kinetic friction coefficient when the velocity is greater. These equations
fully enforces the first requirement of a static friction method, |F||| ≤ µ|F⊥|.

12

Chapter 4

Input Description

4.1 Introduction

directive var1 var2
Default: directive num1 num2

The variables are numbers input, and the default is what happens if no
directive is given.

done

Terminates input and starts the program running. This is the only manda-
tory part of the input. Multiple done commands have no effect.

rem stuff

Remark. Allows comments in the input file. Allows commenting out lines.
Ignored by marbles.

4.2 Parameters

runs number
Default: runs 10000

How many time-steps are run. This multiplied by alpha gives the total time
that the simulation simulates.

number of spheres number
Default: number of spheres 1000

The total number of spheres in the simulation.

initial time time
Default: initial time 0.0

13

The initial time used to start the simulation. This will allow the various
times to be modified, such as the earthquake start times and such.

kinetic friction friction coefficient
Default: kinetic friction 0.1

The kinetic friction coefficient.

static friction new friction coefficient static friction hooke velocity max sqr

The static friction coefficients. The friction coefficient limits the amount
of friction to friction coefficient*normal force. The static friction hooke is how
much force there is related to the distance slipped. The velocity max sqr is the
maximum velocity squared that static friction operates in.

static friction new2 friction coefficient static friction hooke
surface static friction hooke velocity max sqr

The static friction coefficients. The friction coefficient limits the amount
of friction to friction coefficient*normal force. The static friction hooke is how
much force there is related to the distance slipped between spheres. The sur-
face static friction hooke is how much force there is related to the distance
slipped between the sphere and the surface. The velocity max sqr is the maxi-
mum velocity squared that static friction operates in.

static friction new3 sphere sphere friction coefficient
sphere sphere static friction hooke surface friction coefficient
surface static friction hooke velocity max sqr

The static friction coefficients. The two friction coefficient limit the amount
of friction to friction coefficient*normal force. The sphere sphere one is used
between two spheres, and the surface one is used between spheres and the sur-
face. The static friction hooke is how much force there is related to the distance
slipped between spheres. The surface static friction hooke is how much force
there is related to the distance slipped between the sphere and the surface. The
velocity max sqr is the maximum velocity squared that static friction operates
in. This version allows separate values for the sphere to sphere static friction
coefficient and the sphere to surface coefficient.

alpha time step
Default: alpha 0.0001

The time step between each iteration of the model. Each time-step takes
this long in simulation time. The unit is seconds.

dash pot dash pot constant
Default: dash pot 2.0

14

The dashpot damping coefficient. Large values of this tend to make the
model unstable (may need to decrease the timestep if this is increased).

dash pot2 normal dash pot constant transverse dash pot constant
Default: dash pot2 2.0 2.0

The separate dashpot damping coefficients. The normal is used for normal
velocity, and the transverse is used for transverse velocities.

seed random seed
Default: seed 256

The random number to seed the random number generator with. Put in
different values to get different initial conditions. The random number generator
is mostly used to find initial sphere locations.

sphere sphere hooke constant
Default: sphere sphere hooke 10000.0

The sphere to sphere hooke constant in kg*m/(m*s**2)

sphere vessel hooke constant
Default: sphere vessel hooke 10000.0

The sphere to vessel hooke constant in kg*m/(m*s**2)

sphere radius center radius outside radius
Default: sphere radius 0.0 0.1

The center radius is the radius of the inner region. The outside radius is the
radius of the sphere in meters. If the center radius is 0.0 then the sphere has
uniform density.

sphere density center density outside density
Default: sphere density 0.0 2.0

The density of the sphere in kg/m**3. Used to calculate mass and moment
of inertia. The first value is the density of the center region. The second value
is the density of the region outside the outer region. For example, a tennis ball
would have a center region density of 0.0 (or air) and an outside density that
matched rubber.

recirculate recirculation height door closed time first door open time hole size
hole depth

Creates a door at the bottom of the cone. The door will first open at
first door open time and then it will close for door closed time every time that
a sphere falls through. The spheres will be dropped from recirculation height
(make sure that is above all the spheres). Makes the door sphere radius *

15

hole size The hole depth is the distance below the end of the cone that the
door is and is in meters. This allows a short cylinder to be placed below the
cone to simulate the drainage tube. It is recommended that recirculate params
be used instead since it splits out the geometry changes from the recirculation
parameters.

recirculate params recirculation height door closed time first door open time

Causes the spheres to be recirculated. The door will first open at first door open time
and then it will close for door closed time every time that a sphere falls through.
The spheres will be dropped from recirculation height (make sure that is above
all the spheres). Make sure that a exit chute has been created.

ppf filename base filename

The filename must be of the format abcdefgh00 where there are eight letters
followed by two digits that are ignored. The last two characters are replaced by
the MPI processor rank, and debugging and timing information is put in the
file. This directive is ignored for the single processor marbles7 and marbles9
program.

linear static friction cutoff

If this is turned on, then the model will use a 1- v transvere/v static max
for the static friction cutoff. Otherwise, 1 will be used.

sort spheres

If this is added, after the spheres are initially loaded, it will sort them by
height. In general, this should be included, since it speeds up the program by
increasing memory locality which improves cache usage.

zero long slips mult mult

Zeros slips that are longer than mult*normal force*static friction coefficient

integration method method

In marbles9 this is used to determine the integration method used. Meth-
ods available are euler, runge kutta, adams bashforth and adams moulton. In
marbles10 only euler and runge kutta are available.

4.3 Tallies

dump frequency frequency
Default: dump frequency 100000

How often a dump of the overlaps between spheres is done. This is always
done at the end. Units of timesteps.

16

display frequency frequency
Default: display frequency 1000

How often the data for the spheres is displayed. This includes the position,
velocities and static friction loadings for all the spheres. Unites in terms of
timesteps. Note that these can be loaded from with appropriate processing,
and used as restart files.

position display frequency frequency
Default: position display frequency 100000000

How often just the positions of the spheres are displayed. Units in terms of
timesteps. This will dump less information to the output so disk space is not
quite as much of an issue.

energy display frequency frequency
Default: energy display frequency 100

How often to display the total energies. Units in terms of timesteps.

velocity tally start time frequency

Starts tallying the velocity from start time every frequency. Frequency is
number of time steps to wait to do each tally.

probability table start time frequency delta size

Starts the probability tally at start time every frequency. Frequency is the
number of time steps to wait to do each tally. delta size specifies the size of the
grid that the probabilities are done on.

calculate sphere wear

If this is turned on, calculates the sum of the normal force**(4/3)*distance
for the sphere slips. This number is proportional to the volume of material
produced by adhesive wear.

normal force wear exponent exponent
Default: exponent 2.0/3.0

Allows a different exponent to be used for the sphere wear calculation.

wear velocity bins number list of bins

This allows wear values to be calculated for different velocity bins. For
example, if this is wear velocity bins 2 1.0 2.0 then three bins of wear tallies will
be calculated, wear up to 1.0 m/s, wear from between 1.0 and 2.0, and wear
from above 2.0.

calculate force tally

If this is turned on, a sum of the force on spheres at different points in the
vessel is done.

17

4.4 Packing

initial packing value
Default: initial packing 0.10

The initial density of the spheres. Should not be greater than 0.15 or the
model may get into infinite loops trying to get started (or at least appears to
act that way). In general random packing method should be used instead.

random packing method mult

An alternative method of packing. This uses the PRIMe method which
generates a large number of sphere positions and finds the non-overlapping ones.
This can produce higher packing fractions than the initial packing method. The
larger the mult, the higher the packing density, but the slower the method. Using
100000 results in a packing fraction above 0.5.

cone packing opening size height

Cone packing creates a cone above the vessel with an opening radius size
that is opening size in meters and the bottom is at height and has a 45 degree
angle. Then, the spheres are initially put above the cone and drop down through
the hole into the vessel. This is more realistic than the other packing method,
but slower.

cone packing chute opening size height chute height

Cone packing creates a cone above the vessel with an opening radius size
that is opening size in meters and the bottom is at height and has a 45 degree
angle. Then, the spheres are initially put above the cone and drop down through
the hole into the vessel. This is more realistic than the other packing method,
but slower. The chute height is a cylinder starting at height and going down by
chute height meters and is to make the spheres go straighter.

4.5 Loading and Saving

dump positions filename

At the end of the run, dumps the positions of the spheres to a file.

dump positions mult filename mult

Same as dump positions, except that it multiplies the positions by the mult
factor. Since the positions are in meters, if you say want them in cm, then the
mult should be 100.0, and so forth.

load positions filename

18

At the start of the run, loads the positions of the spheres from a file. The
positions should be in three floating point numbers seperated by spaces. They
are x,y,z in meters.

load positions divide filename divide

Same as load positions, except that it divides the positions by the divide
factor. Since the positions are in meters, if you say want to load them from say
cm, then the divide should be 100.0, and so forth.

load sphere info filename

Loads all the info from the file. Same format as the dumps that occur to
standard out. load sphere save is generally preferred unless there is no slip or
surface slip data.

load sphere slips

Loads the slips from a file in addition to all the other data. Ignored if
load sphere info does not also appear in the file.

load sphere surface slips

Loads the surface slips from a file in addition to all the other data. Ignored
in if load sphere info does not also appear in the file.

load sphere save filename

Loads all the sphere info from the file. Same format as the dumps that occur
to standard out. Loads both the slips and the surface slips.

4.6 Earthquake

earthquake enable number of waves
Default: earthquake enable 0

Enables number of waves of earthquake waves. The number must at least
be the number of earthquake waves that are later defined. Must appear before
any definition of an earthquake wave.

earthquake sine wave start time end time d x d y d z period initial cycle

The wave runs between the start time and the end time (in terms of seconds).
The d x, d y, and d z are displacements that the earthquake does. So, d x = d y
= 0 and d z = 1.0 would be a earthquake that caused a 1.0 meter displacement in
the upward direction, followed by a 1.0 displacement in the downward direction.
The period is the time that the earthquake takes to cycle back to the beginning.
The initial cycle is between 0 and 2*pi and determines where in the sine wave
a cycle starts.

19

earthquake sine wave offset start time end time d x d y d z period
initial cycle offset

The same as earthquake sine wave, except there is a default offset. If the
offset is zero, then it is exactly as the earthquake sine wave. If it is 1 then
the displacement runs from 2.0*displacement to 0.0*displacement, instead of
1.0*displacement to -1.0*displacement.

tabular earthquake earthquake start table data delta table length filename

The earthquake start is the time that the earthquake data starts. The ta-
ble data delta is the time between each piece of data in the table. Note that
table data deltas less than the alpha value are not well handled in the current
code (It won’t crash, but the frequency spectrum will be destroyed). The ta-
ble length is the number of sample values. The filename is the name of the file
to load the data from. The data should be in lines of x,y,z displacement values.
The velocity is calculated by subtracting successive values.

4.7 Geometry Section

There can be one geometry section. It start with a start_geometry line and
ends with a end_geometry line. In between, it can have unions, which con-
sist of multiple objects that are combined together to form one object. A
union is started with a start_union line and ended with a end_union line.
A intersection is started with a start_intersection line and ended with a
end_intersection line. In both a union and an intersection there can be the
following objects. The geometry section can also have inlets, which specify
where the recirculating spheres enter.

inlet px py pz vx vy vz

Specifies the initial position x,y, and z and the initial velocity x, y, and z
when a sphere is removed from the bottom of the vessel.

4.7.1 Geometry Objects

block xmin ymin zmin xmax ymax zmax

Creates a rectangular parallelepiped box with corners at xmin, ymin, zmin
and xmax, ymax, and zmax. The minimum values must be less than the maxi-
mum values for each dimension.

cylinder radius xcenter ycenter zmin zmax

Creates a vertical cylinder between zmin and zmax centered at xcenter and
ycenter with the supplied radius.

plane a b c d

20

Creates a plane defined by the equation ax + by + cz + d = 0. The nor-
mal for this plane is a vector formed by normalizing ax̂+ bŷ+ cẑ. For example,
plane 0.0 0.0 1.0 -8.0 would form a floor at height 8.0, and plane 0.0 0.0 -1.0 8.0
would form a ceiling at height 8.0, and plane 0.0 0.0 -0.5 4.0 would also
form a ceiling at height 8.0.

4.7.2 Indentations

Indentations are depressions in a wall. Right now, they are only supported on
the main wall specified by the vessel_radius directive. A pattern is created
by intersecting multiple planes. These patterns are then replicated between a
minimum and a maximum height, at each row and at each angle specified for
the row.

The indentations occur between the minimum and maximum height spec-
ified. Rows are specified by providing a minimum, and all the angles that
indentations occur at in that row.

start pattern

Starts a pattern block. Must be inside an indentation block. The only thing
inside should be plane directives.

end pattern

Ends a pattern block.

min max minimum maximum

This must be inside an indentation block and before any rows. It specifies
the minimum and the maximum heights that indentations are allowed.

start row

This starts a row block. It must be inside an indentation block.

end row

This ends a row block.

row min min

This specifies the minimum location (and zero point) of a row. The row
goes to either the next row’s minimum location or the indentation’s maximum
location. This must be in a row block.

angle angle

This specifies an angle that an indention pattern is used. This must be in a
row block, and multiple angles can be specified.

21

angles angle count angle1 angle2 ...

This specifies multiple angles that an indention pattern is used. This must
be in a row block, and this can be repeated. The angle count is the number of
angles that follow in that line.

vessel_radius 0.0 0.15
start_geometry
start_indentation
start_pattern
plane -1.0 0.0 0.0 0.25
plane 1.0 0.0 0.0 0.25
plane 0.0 -1.0 0.0 0.05
plane 0.0 1.0 0.0 0.05
plane 0.0 0.0 -1.0 0.5
plane 0.0 0.0 1.0 0.0
end_pattern
min_max 0.4 2.0
start_row
row_min 0.4
angle 0.0
end_row
start_row
row_min 1.0
angle 90.0
angle -45.0
angle 180.0
end_row
end_indentation
end_geometry

4.8 Other Geometry

vessel radius inside radius outside radius
Default: vessel radius 0.0 1.0

The size of the cylinder the vessel is in. Spheres go between the inside radius
and the outside radius. If the inside radius is 0.0 then the container is a cylinder
instead of an annulus.

rectangular vat x wall y wall

Creates a rectangular vat instead of a cylindrical. Use with a cone chute
underneath is untested. The x wall parameter is the distance that x wall is
from the center in meters, so the vat’s floor area is 4.0*x wall*y wall.

22

floor location height
Default: floor location 0.0

Sets the height of the floor. Below this value the spheres are forced up by
the hookes law force.

cone location slope

Creates a cone starting at location height and going down at slope slope.
Slope 0.0 would be straight down, and 1.0 would be 45 degrees. Uses formula
radius = m * z + constant

number of cones number of cones

Creates the specified number of cones located radially spaced around the
vessel center.

offset inlet holes

Offsets the inlet holes and the cone packing cones from the holes that are in
the base.

exit chute hole size hole depth

Creates a door at the bottom of the cone. Makes the door sphere radius *
hole size The hole depth is the distance below the end of the cone that the door
is and is in meters. This allows a short cylinder to be placed below the cone to
simulate the drainage tube. If you want recirculation, use the recirculate params
function. Note that these parameters are also set if recirculate is used instead
of recirculate params.

23

Chapter 5

Methods of Packing

The Marbles code has three different methods of packing, or creating an initial
condition. One of these needs to be chosen when an existing save file is not used.
The simplest is the drop and compact method. For this method, an initial very
low density packing is created (typically 15% filled) and then gravity is used
to compact the spheres. This method has two issues. First, the simulation
can use a fair amount of time simulating the falling of the spheres until they
reach their final position. Second, depending on the number of spheres and
the cross sectional area of the vat, the spheres that are above can cause excess
compression of the spheres that are below, and static friction can lock in part
of this compression. This results in non-physical configurations.

The second method is the PRIMe method developed by Kloosterman and
Ougouag [?]. In this method large numbers of random positions (on the order
of 100,000 more than will fit) are generated. The random positions are sorted
by height, and starting at the bottom, the ones that fit are kept. Figure ??
illustrates this process. This generates packing fractions of approximately 0.55.
Then they are allowed to fall to compact. This compaction takes less time than
starting with a 0.15 packing fraction.

The last method is to automatically generates virtual chutes above the vessel
where the actual inlet chutes are, and then loads the spheres into the chutes.
Figure ?? shows this in progress. This allows locations that have piles where
the inlet chutes are, but can be done quicker than a recirculation. The other
two methods generate flat surfaces at the top, which is unrealistic, since the
surface of a recirculated vessel will have cones under each inlet chute.

Each of these methods will result in somewhat different initial configura-
tions. The packing fraction and the vertical packing fraction distribution will
be different depending on the method chosen and the parameters given to the
method.

24

Figure 5.1: PRIMe Method Illustration

Virtual
Chute

Vessel

Figure 5.2: Virtual Chute Method

25

Chapter 6

Recirculation Simulation

The recirculation is simulated by moving a sphere from the bottom of one of
the outlet chutes to an inlet location. Essentially, Marbles creates a flat door at
the bottom of the outlet chutes. The lowest sphere is removed when the door
is opened. If there are multiple outlet chutes, one sphere is removed from one
of the chutes. The code cycles through all the outlet chutes, so that each time
a different chute is used.

Spheres are dropped in at the top. The location is selected by the input file.
By default they are dropped in at the recirculation height directly above the
center of the outlet chute with no initial velocity. They can also be dropped
offset from the outlet chute. Alternatively the exact locations and the initial
velocity of the spheres can directly be specified in the geometry section.

26

Chapter 7

Earthquake Simulation

For each time, the simulation calculates both a displacement and a wall velocity.
For the sum of waves method, the displacement is calculated by:

d =
∑

i

D
[
sin

(
(t− S)

2.0π
p

+ c

)
+ o

]
(7.1)

where t is the current time, S is the time the wave starts, p is the period of
the wave, c is the initial cycle of the wave, o is the offset, and D is the maximum
displacement.

The velocity is calculated by:

m =
∑

i

2πD
p

cos

(
(t− S)

2π
p

+ c

)
(7.2)

For the tabular data, the displacement and velocity are calculated by:

d = (1− o)Tk + oTk+1 (7.3)

m =
1
δ

(Tk+1 − Tk) (7.4)

where Ti is the displacement at the i’th timestep, o is a number between 0
and 1 that specifies where 0 is the start of the timestep and 1 is the end, and δ
is the time in seconds between timesteps.

All the displacements are summed and the code then adjusts each sphere’s
velocity and position:

p = p + d (7.5)
v = v + m (7.6)

(7.7)

27

Chapter 8

Sample inputs

These are sample inputs that can be used to testing spheres or as the basis for
other inputs.

8.1 Sample Packing Input

rem Sample Packing input
vessel_radius 0.0 0.5
sphere_radius 0.01 0.02
runs 10000
kinetic_friction 0.4
static_friction_new3 0.6 1.0e6 0.6 1.0e6 0.01
alpha 0.0001
dash_pot2 200.0 200.0
sphere_sphere_hooke 1.0e6
sphere_vessel_hooke 1.0e6
sphere_density 2000.0 1000.0
random_packing_method 100000
use_simple_integrator
floor_location 0.0
no_linear_static_friction_cutoff
decrease_long_slips 1.1 1.0
sort_spheres
done

8.2 Sample Extended Input

vessel_radius 0.0 1.0
number_of_spheres 10000
rem 30 degrees from surface, or 60 degrees from wall
cone 0.0 1.73205

28

start_geometry
inlet 0.0 0.5 3.0 0.0 -0.1 0.0
inlet 0.0 -0.5 3.0 0.0 0.1 0.0
start_union
cylinder 0.2 0.5 0.0 -8.0 8.0
block 0.5 -0.2 -8.0 2.0 0.2 8.0
end_union
start_intersection
cylinder 0.2 -0.5 0.0 -8.0 8.0
block -2.0 -0.2 -8.0 -0.5 0.2 8.0
end_intersection
end_geometry
sphere_radius 0.01 0.02
runs 20000
kinetic_friction 0.4
static_friction_new3 0.6 1.0e6 0.6 1.0e6 0.01
alpha 0.0001
dash_pot2 200.0 200.0
sphere_sphere_hooke 1.0e6
sphere_vessel_hooke 1.0e6
sphere_density 2000.0 1000.0
random_packing_method 10000
dump_frequency 100000000
display_frequency 10000000
position_display_frequency 1000000
use_simple_integrator
floor_location -8.0
recirculate_params 3.0 0.25 1.0
exit_chute 8.0 2.0
seed 512
no_linear_static_friction_cutoff
decrease_long_slips 1.1 1.0
sort_spheres
done

8.3 Sample Packing and Recirculation

rem flow test
vessel_radius 0.0 0.20
sphere_radius 0.01 0.02
rem 10% recirculation (500*0.1+1)/0.0001
runs 510000
number_of_spheres 2000
kinetic_friction 0.4
static_friction_new3 0.6 1.0e6 0.6 1.0e6 0.01

29

alpha 0.0001
dash_pot2 200.0 200.0
sphere_sphere_hooke 1.0e6
sphere_vessel_hooke 1.0e6
sphere_density 2000.0 1000.0
use_simple_integrator
floor_location -8.0
cone 0.0 1.0
recirculate_params 1.6 0.25 1.0
exit_chute 5.5 0.0
no_linear_static_friction_cutoff
decrease_long_slips 1.1 1.0
sort_spheres
seed 256
done

marbles9 pack_and_recirc > pack_and_recirc.out
get_run pack_and_recirc.out 510000 | get_save_info > pack_and_recirc_save

8.4 Sample Earthquake input

The following loads from the packing and recirculation example, but could also
be generated new by replacing the load sphere save with a random packing method
directive.

rem earthquake sample input
vessel_radius 0.0 0.20
sphere_radius 0.01 0.02
runs 100000
number_of_spheres 2000
kinetic_friction 0.4
static_friction_new3 0.6 1.0e6 0.6 1.0e6 0.01
alpha 0.0001
dash_pot2 200.0 200.0
sphere_sphere_hooke 1.0e6
sphere_vessel_hooke 1.0e6
sphere_density 2000.0 1000.0
use_simple_integrator
floor_location -8.0
cone 0.0 1.0
exit_chute 5.5 0.0
no_linear_static_friction_cutoff
decrease_long_slips 1.1 1.0
sort_spheres
earthquake_enable 2
earthquake_sine_wave_offset 2.0 8.0 0.248 0.0 0.0 1.0 -1.5707963 1.0

30

load_sphere_save pack_and_recirc_save
seed 256
done

31

Chapter 9

Post processing tools

There are several tools that can be used for post processing the Marbles output.
These include data splitters, data readers and packing fraction calculations.

get run time step number filename

zget run time step number filename.gz

The script get run and the compressed file version zget run get a specific
time-step from the marbles output. This is used by specifying the filename and
the time-step number (like get run 1000 packing output).

get save info [filename]

This command takes either a filename or the standard input and outputs
only the portions that are valid portions of a save file. This is usually used with
the get run command. Typical use would be get run pack and recirc.out
600000 | get save info > pack and recirc save which can then be used
with load sphere save in a different input.

get energy filename

zget energy filename.gz

Extracts the energy displays from the program. This is a simple way to check
the progress of an input since the time is included in the display. It also can
be used to check if a packing run has sufficiently slowed down by looking at the
linear and rotational energy. Geometry problems also show up if substantial
amounts of energy are being injected into the system. However, earthquakes
and recirculation also add energy to the system, and the compression energy is
not tallied into the total.

split data filename directory name [frequency [skips]]

32

This command splits out the different time-steps of the file into the directory.
This split up data can then be used by other programs such as plotters or the
packing fraction calculation. The split can be done at different powers of 10
frequencies. Also, the only every skip can be calculated. For example, if the
output was displayed every 100 times, and every thousandth output was desired,
the command would be split data filename filename dir 100 10

bin count filename [cylinder radius [cylinder bottom cylinder top
[sphere radius [center radius]]]]

This command calculates the packing fraction from a save file. This is cal-
culated both vertically and radially. In order to do this, it needs to know the
cylinder radius and the inner cylinder radius so that the area that is encom-
passed can be calculated. It also needs to know the sphere radius so that area
and volume can be calculated, and for calculating the radial packing fraction,
the cylinder bottom and top need to be specified so that area can be calculated
correctly. Note that these should be included in the actual area that is filled
with spheres, so that the fraction calculation does not calculate over empty
space.

For determining the volume of a sphere that is inside vertical slice the formula

a = max(−r, bot− z) (9.1)
b = min(r, top− z) (9.2)

v = π

[
r2(b− a) +

1
3

(a3 − b3)
]

(9.3)

where r is the sphere radius, bot is the bottom of the vertical slice,top is the top
of the vertical slice and z is the vertical location of the sphere center.

To determine the area inside a vertical and radial slice, two auxilary functions
are defined, one which has the area inside a radial 2d slice, and another which
has the area outside a radial 2d slice.

f

r

I

c

j

θ
Φ

Figure 9.1: Area inside geometry

33

r

O

c

kθ
Φ

Figure 9.2: Area outside geometry

Figure ?? shows the area that is inside both a circle of radius c and a radial
slice of I. The circle is r from the center of the radial circle. Auxiliary terms are
defined, which include f , the distance from the intersection of the segment of the
radial circle perpendicularly to the center line, j the distance to the intersection
of f , θ the angle of segment, and φ the angle from the segment intersection on
the circle side. The area inside function has the following definition:

ai = 0.0 if I < r − c (9.4)

ai = πc2 if r + c < I (9.5)

ai = πI2 if I < r + c and I < c− r (9.6)
otherwise (9.7)

j =
r2 + c2 − I2

2r
(9.8)

f =
√
c2 − j2 (9.9)

θ = 2 arccos
I2 + r2 − c2

2Ir
(9.10)

φ = 2 arccos
r2 + c2 − I2

2rc
(9.11)

ai =
1
2
c2φ+

1
2
I2θ − fr (9.12)

Figure ?? shows the area that is outside the radial slice, but inside the circle.
The radial slice has a radius of O. The new auxiliary term k is the distance from
the circle’s center to the perpendicular intercept. The area outside function has
the following definition:

34

ao = 0.0 if O > c+ r (9.13)

ao = πc2 if c− r > O (9.14)

ao = πc2 − πO2 if O < r + c andO < c− r (9.15)
otherwise (9.16)

k =
O2 − r2 − c2

2r
(9.17)

m =
√
c2 − k2 (9.18)

θ = 2 arccos
k + r

O
(9.19)

φ = 2 arccos
k

c
(9.20)

ao = (
1
2
c2φ−mk)− (

1
2
O2θ −m(k + r)) (9.21)

Then, the total volume in a radial slice can be determined from the compu-
tation:

a = max(−r, bot− z) (9.22)
b = min(r, top− z) (9.23)

vt = π

[
R2(b− a) +

1
3

(a3 − b3)
]

(9.24)

vi =
∫ b

a

area inside(c =
√
R2 − z2)dz (9.25)

vo =
∫ b

a

area outside(c =
√
R2 − z2)dz (9.26)

v = vt − vi − vo (9.27)

35

Chapter 10

Approximations

The Marbles simulation uses soft spheres. Physically, there will be deflection of
spheres under pressure (even the pressure of just one sphere on the floor), but
the true compression is much smaller than what is actually modeled in typical
inputs (such as the example inputs provided). In these inputs for Marbles, the
forces are chosen to keep the compression distance at a millimeter or below.
Another effect related to the physics simulation is that force is transmitted via
contact. This means the force from one end of the vessel is transmitted at a
speed related to the time-step used for the simulation, instead of the speed of
sound.

The physics models do not take into account several physical phenomena.
The physics do not handle pure spin effects, such as when two spheres are
contacting and are spinning with an axis around the contact point. This should
result in forces on the spheres, but the physics model does not handle this effect
since the contact velocity is calculated as zero. In addition, when the sphere is
rolling so that the contact velocity is zero because the sphere’s turning axis is
parallel to the surface and at the same rate as the sphere is moving along the
surface, there should be rolling friction, but this effect is not modeled either.
As well, the equations used assume that the spheres are spherically symmetric.

The physics model does not match classical Hertzian or Mindlin and Dere-
siewicz elastic sphere behavior. The static friction model is a simplification and
does not capture all the hysteretic effects of true static friction. Effectively,
this means that hs, the coefficient used to calculate the force from slip, is not
a constant. In order to fully discuss this, some features of these models will be
discussed in the following paragraphs.

Since closed-form expressions exist for elastic contact between spheres, they
will be used, instead of a more general case which lacks closed-form expressions.
Spheres are not a perfect representation of the effect of contact between shapes
such as a cone and a sphere, but should give an approximation of the size of the
effect of curvature.

The amount of contact area and displacement of distant points for two
spheres or one sphere and one spherical hole (that is negative curvature) for

36

elastic spheres can be calculated via Hertzian theory[?]. For two spherical sur-
faces the following variables are defined:

1
R

=
1
R1

+
1
R2

(10.1)

and

1
E∗

=
1− ν2

1

E1
+

1− ν2
2

E2
(10.2)

with Ri the ith’s sphere’s radius, Ei the Young’s modulus, νi the Poisson’s
ration of the material. For a concave sphere, the radius will be negative. Then,
via Hertzian theory, the contact circle radius will be:

a =
(

3NR
4E∗

)1/3

(10.3)

where N is the normal force. The mutual approach of distant points is given
by:

δ =
a2

R
=
(

9N2

16RE∗2

)1/3

(10.4)

Notice that the above differs compared to the Hooke’s Law formulation that
Marbles uses. The maximum pressure will be:

p0 =
3N

2πa2
(10.5)

So as a function of the radii R1 and R2, the circle radius of the contact will
be:

a =

(
3N
4E∗

[
1
R1

+
1
R2

]−1
)1/3

(10.6)

If m is used for the multiple of negative curvature sphere of the radius of
the other, then the equation becomes:

a =

(
3N
4E∗

[
1
R1
− 1
mR1

]−1
)1/3

(10.7)

which can be rearranged to:

a =
(

3NR1

4E∗

)1/3(
1− 1

m

)−1/3

(10.8)

From this equation, as m increases, it has less effect on contact area, so if
R2 is much greater than R1, the contact area will tend to be dominated by R1

rather than R2. For example, typical radii in Marbles might be 18 cm outlet

37

chute and a 3 cm sphere, which would put m at 6, so the effect on contact area
radius would be about 33% difference compared to sphere to sphere contact area
radius, or 6% compared to a flat surface.1

To some extent, the actual contact area is irrelevant for calculating the
maximum static friction force as long as some conditions are met. Both surfaces
need to be of a uniform material. The basic macroscopic description |FS | <=
µ|N | needs to hold, so changing the area changes the pressure P = N/a, but
not the maximum static friction force. If the smaller area causes the pressure to
increase enough to cause plastic rather than elastic contact, then through that
mechanism, the contact area would cause actual differences in experimental
values. Marbles also does not calculate plastic contact effects.

The contact area causes an effect through another mechanism. The tangen-
tial compliance in the case of constant normal and increasing tangential force,
that is the slope of the curve relating displacement to tangential force, is given
in Mindlin and Deresiewicz as:

2− ν
8µa

(10.9)

Since the contact area radius, a, is a function of curvature, the slope of
the tangential compliance will be as well, which is another effect that Marbles’
constant hs does not capture.

In summary for the static friction using a constant coefficient for hs yields
two different approximations. First, using the same constants for wall contact
when there is different curvatures is an approximation that will give somewhat
inconsistent results. Since the equations for spherical contact are dominated by
the smaller radius object, this effect is somewhat less but still exists. Second,
using the same constant coefficient for different loading histories is a approxi-
mation. For a higher fidelity, these effects need to be taken into account.

1 Sample values of k =
`
1− 1

m

´−1/3
: m = −1, k = 1.26 for sphere to sphere, m = 6, k =

0.94 sphere to outlet chute and m =∞, k = 1 sphere to flat plane.

38

Chapter 11

Estimating Run-times

The code theoretically scales as a function of the number of time-steps times
the number of spheres. In practice, the time for running increases somewhat
faster because there are less edge spheres (which have fewer sphere to sphere
contacts) and less fit in the cache.

39

Chapter 12

Marbles History and
Disclaimer

Marbles is a derivative work of the PEBBLES code r1378 24Feb2011. In general,
PEBBLES inputs will work with Marbles. PEBBLES and the manual were
obtained from OSTI’s Energy Science and Technology Software Center1, along
with a derivative dissemination license.

Marbles is distributed under the GNU General Public License, version 2 or
later as an open source project.

The PEBBLES work was supported by the U.S. Department of Energy, As-
sistant Secretary for the office of Nuclear Energy, under DOE Idaho Operations
Office Contract DE-AC07-05ID14517.

The information in the PEBBLES manual was prepared as an account of
work sponsored by an agency of the U.S. Government. Neither the U.S. Gov-
ernment nor any agency thereof, nor any of their employees, makes any warranty,
expressed or implied, or assumes any legal liability or responsibility for the ac-
curacy, completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned
rights. References herein to any specific commercial product, process, or service
by trade name, trade mark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the U.S.
Government or any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the U.S. Government or any
agency thereof.

1002570WKSTN00 PEBBLES http://www.osti.gov/estsc/details.jsp?rcdid=4627

40

http://www.osti.gov/estsc/details.jsp?rcdid=4627

Bibliography

[1] S. T. Thornton and J. B. Marion, Classical Dynamics of Particles and
Systems, 5th Ed., Brooks/Cole, Belmont, California, USA (2004).

[2] Jacques Duran, Sands, Powders, and Grains: An Introduction to the
Physics of Granular Materials, Springer, New York, New York, USA
(1999)

[3] Matthias Sperl, “Experiments on corn pressure in silo cells – translation
and comment of Janssens paper from 1895,” Granular Matter, 8, pp. 59-65
(2006)

[4] D. M. Walker, “An approximate theory for pressures and arching in hop-
pers,” Chemical Engineering Science, 21 pp. 975-997 (1966)

[5] R. D. Mindlin and H. Deresiewicz, “Elastic Spheres in Contact Under
Varying Oblique Forces,” Journal of Applied Mechanics, 20, pp. 327-344
(1953).

[6] P. A. Cundall and O. D. L. Strack, “A discrete numerical model for gran-
ular assemblies,” Géotechniqe, 29, pp. 47-65 (1979).

[7] L. Vu-Quoc, X. Zhang and O. R. Walton, “A 3-D discrete-element method
for dry granular flows of ellipsoidal particles,” Computer Methods in Ap-
plied Mechanics and Engineering, 187, pp. 483-528 (2000)

[8] Leonardo E. Silbert, Deniz Ertas, Gary S. Grest, Thomas C. Halsey, Dov
Levine, and Steven J. Plimpton, “Granular flow down an inclined plane:
Bagnold scaling and rheology,” Physical Review E, 64 051302 (2001)

[9] James W. Landry, Gary S. Grest, Leonardo E. Silbert, and Steven J.
Plimpton, “Confined granular packings: Structure, stress, and forces,”
Physical Review E, 67,041303 (2003)

[10] Chris H. Rycroft, Martin Z. Bazant, Gary S. Grest, and James W. Landry,
“Dynamics of random packings in granular flow,” Physical Review E, 73
051306 (2006)

41

[11] Chris H. Rycroft, Gary S. Grest, James W. Landry, and Martin Z. Bazant,
“Analysis of granular flow in a pebble-bed nuclear reactor,” Physical Re-
view E, 74, 021306 (2006)

[12] R. Wait, “Discrete Element Models of Particle Flows”, Mathematical Mod-
eling and Analysis I, 6, pp. 156-164 (2001)

[13] Zi Lu, Mohamed Abdou, Alice Ying, “3D Micromechanical Modeling of
Packed Beds”, Journal of Nuclear Materials, (2001)

[14] Rmi Jullien, Andr Pavlovitch, Paul Meakin, Journal Phys. A: Math. Gen.
, “Random Packings of Spheres built with sequential models”, (1992)

[15] W. Soppe, Powder Technology, “Computer Simulation of Random Pack-
ings of Hard Spheres”, (1990)

[16] Hannsjrg Freund, Thomas Zeiser, Florian Huber, Elias Klemm, Gun-
ther Brenner, Franz Durst, Gerhand Emig, Chemical Engineering Science,
“Numerical Simulations of single phase reacting flows in randomly packed
fixed-bed reactors and experimental validation”, (2003)

[17] G. A. Kohring, Journal de Physique I, “Studies of Diffusional Mixing in
Rotating Drums via Computer Simulations”, (1995)

[18] J. M. Haile,Molecular Dynamics Simulation, 1997

[19] G. H. Ristow, Flow Properties of Granual Materials in Three-Dimensional
Geometries, (1998)

[20] Loc Vu-Quoc, Xiang Zhang, Mechanics of Materials, “An accurate and
effcient tangential force-displacement model for elastic frictional contact
in particle-flow simulations”, (1999)

[21] R. Wait, Mathematical Modeling and Analysis I, “Discrete Element Mod-
els of Particle Flows”, (2001)

[22] Abderrafi M. Ougouag, Joshua M. Cogliati and Jan-Leen Kloosterman,
“Methods for Modeling the Packing of Fuel Elements in Pebble Bed Reac-
tors”, ANS Topical Meeting in Mathematics and Computation, Supercom-
puting, Reactor Physics and Nuclear and Biological Applications Palais
des Papes, Avignon, France, September 12-15, 2005, on CD-ROM, Amer-
ican Nuclear Society, LaGrange Park, IL (2005)

[23] K.L. Johnson,Contact Mechanics, (1985), ISBN 0-521-34796-3, Cambridge
University Press

42

