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Designed as an aid to those learning
to use electronic .;|rli!]l.r;_-: compulers (or
electronic differential analyzers), this
book will make the transition period
|||']|| i]['i.'ll‘]]."all.i." |‘|.| l‘.‘-.'|!-r.'r'-t1']'|1'|'-||_ {'l::l]'|tf:l'|_.||.|:'|'
operator easier for the engineer,

Following the introductory and gen
I'|'||| ]-||||||.'|'i|:|| [l [-'tl'l'lllr.ili'li.l_' Elll_Fll:“E!_'I LTl
putation, the volume consists of specific
techniques for the solution of difficult
or unusual problems. Wherever prac
ical, techniques and principles have
been presented in such a manner that
an individual with a minimum knowl-
edge of mathematics and electronics can
readily understand them.

The book treats in some detail the
of diodes and differential relays in
nmiu computafion. Special emphasis
15 given to function ;?J.“]]l‘!'illitl_g.-‘. toch-
niques including methods of represent
ing functions of more than one variable.
Phere is a chapter on repetitive analog
computers and a ||:|i||:-I|'-;|' describing the
principles of operation of the digital dif-
ferential analyzer type equipment.

The problems at the end of the chap-
ters will be helpful to both students and
thinse l.'llj,_r,.l_;g{'-:! m self -_-:.1u|_1_‘|.' to Insure
that they have understood the material
|-|'|--|'I1I|-|.[. A brel review of the termi
nology of differential equations and a
briel introduction to operator notation
15 included in the Appendix as an aid to

1||4'- |1=-.~. m;{'..ellH -"d |'|,-;|||1=r'.




ANALOG METHODS
IN COMPUTATION
AND SIMULATION

By WALTER W. SOROKA

University of Californaa

Here is an organized treatment of the
more important and useful methods ol
analog computation and simulation
with |:-i!]'|JI.II|.itI!' reference to 'E'rt_!',ill""‘l
ing and scientific applications.

The book describes mechanical, electro
mechanical. electrical and electronic
analog components for performing basi
mathematical operations and  then
shows how such components may be
combined into mathematical machine:
for solving sets of simultaneous linemw
algebraic equations, polynomial equa
tions, and differential 4~|||L.|li4-|r-. of all
kinds. The final three chapters show
how dynamical analogies, fimite diffe

erice networks, membrane analogie

and conducting sheets of wniform and
variable thickness may be apphied to
the simulation of various physical sy

tems and to the solution ol dullerential

equations.

Treatment is fundamental and direct
The author carefully develops the theo
retical basis for each approach, thu
providing the student with the tool
Necessary [or .'|[:|r|_~.'ir|j_=, these methods Lo
actual problems.

This is a pioneer attempt to organize
classify and present a wide range ol
material on analog computation i tex|
book form. It is a valuable text and rel
erence book for all scientists and eng
neers at both the student and profes
sional levels.
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Other McGRAW-HILL Books
ENGINEERING CYBERNETICS: The Science of Control

By H. S. Tsien, California Institute of Technology. 304 pages,

$7.50
This important book aims to establish Engineering Cybernehcs as a
new branch of enginedring science. It covers, as far as possible within
the limited space, the whole field of scientific principles of control, Irom
the simple conventional servomechanisms to the very complex con
trolled and guided systems. Non-interacting controls ol many variable
--..'|,'=~.1-|'I'|'|~-~I -|1|r|||'|:|| ||1" i:_'_r! by Pl'l'“l]"]]élti.l:ﬁ]'l 0Or "."r'i1|:i ||H"h|2 I'ihl'ﬂl [ Hit Lornance,
optimalizing control, nose filtering and detection. and von Neumann s
I|1HI|'_".' of error control are some of the "iI'I]]lH]'tii!H Lopes e L

PRINCIPLES OF NUMERICAL ANALYSIS

By Arston S, Housemorper, Oak Ridge National Laboratory.

International Series in Pure and ﬂf}ﬂfi}'d Meathematics. 274 pages,

s, 5(0)
A senior-graduate text which develops the mathematical principles upon
which many computing methods are based and in the light of which
they can be assessed. Directed primarily toward digital computation
the book is designed to give a unified treatment rather than a com
plete catalogue of methods. Treatment 1s primarily theoretical, Tech
nagues for making cstimates of errors are mdicated wherever possible
Functional equations as such are not discussed, but emphasis 1s placed
upon the methods of solving the finite systems and perlorming 1T
miterpolations which are required in the digital solution of Tunctional
|'1||I.|.IIIIII-

INTRODUCTION TO NUMERICAL ANALYSIS

v F. B. Hipesrano, Massachusetts Institute of Technology. In

ternational Series in Pure and -*H-’,ﬂ-"‘f—-'rf Mathematics, 520 pages

=L 0
Diesigned for workers 1in fields of engineering, mathematics and physics
for research personnel and for courses in Numerical Analysis oflered
by colleges and universities, this book provides an introductory treat
ment of the fundamental processes of Numerical Analysis. These pro
pssoe are the foundation of existent techniques associated with the
effective use of modern high-speed calculating devices, Thus, the texi
o ides a substantial treatment of the hasi “I"'r"'li"‘““‘ of computation
approximation, interpolation, numerical differentiation and integration
and the numerical solution of equations.

CONTROL-SYSTEM DYNAMICS
By Warter R. Evans, North American Aviation, Inc., Downer
California. MeGraw-Hill Electrical and Electronic Enginecring
Series. 277 pages, $7.50
An exposition of the “Root Locus Method™ invented and developed by
the author. this new volume demonstrates the techniques for determin
ing the response of linear control systems. The root locus, a ool 1o
factor an ialﬂi_{vh]'rai:' polynomial, is useful in analyzing the pertinent
differential equations in feedback control systems. Developing from the
simple to the complex, each solution establishes a concept which per
mits & a:||||||]t'r' 1 I!IJIIII.|I.I1' oy b .||-|I|iw] to the next, more 1HII1|I|H el
problem,
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PREFACE

The electronic differential analyzer, frequently referred to as the
¢lectronie analog computer, has become an extremely important tool
to the engineer, physicist, and applied mathematician in the past
decade. Many of the rapid advances in the field of automation would
have been impossible without this tool.

The treatment of the electronic differential analyzer contained in
this book was written as an aid to the computer operator. The
presentation of the material is such that the average person with a
knowledge of Ohm's law, Kirchhoff's laws, and a basic knowledge of
differential equations ean read and understand the majority of the
material presented. In a few isolated instances Laplace-transform
notation is used to prove a statement. The results obtained, however,
are stated in such a manner that they can be applied to the setup of
computer problems without a knowledge of Laplace-transform theory.

In the various stages of development, the material contained in
this book has been used for the past two years in the computer courses
tamught to advanced undergraduate and graduate students at the U5,
Air Force Institute of Technology at Wright-Patterson Air Force
Base, Ohio.

The analog-computer course was included in the curricula because
of the relatively large number of students undertaking independent
study investigations in the fields of guidance systems and automatic
control, The use of computing devices in the level of work attempted
was virtually mandatory.

Prior to the inauguration of the computer courses, too much of the
student's effort in his thesis work was directed toward learning to use
the computer and too little toward the actual investigation of his
problem. Itisthe author's belief that this situation has been improved
by the inclusion in the curricula of the material in this book.

The author further believes that the engineer, whether his specialty
b electronics, mechanies, chemistry, or aerodynamics, has an increas-
ing need to be familiar with both analog and digital computers.
Although he may never be called upon to operate a computer, he

vil
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should recognize the capability of a particular class of computers to
solve a problem with which he may be confronted.

The arrangement of the material in this book was chosen in such
a manner as to permit laboratory work to accompany the classroom
work. For this reason the material proceeds rapidly in the early
chapters into the discussion of amplitude- and time-scale factor adjust-
ment and the setup of linear systems of differential equations. Non-
linear components and function-generating techniques are also con-
sidered in the early chapters. The later chapters consider such topies
as the application of analog computers to the solution of problems
other than ordinary differential equations, a more detailed deseription
of computer components, checking computer results, and repetitive
analog computers. The book is concluded with a brief introduction
to the logic operation of the digital integrating differential analyzer.

A brief review of the terminology of differential equations and a
brief introduction to operator notation is included in the Appendix
as an aid to the less advanced reader.

The author is indebted to Professor C. E. Warren of The Ohio State
University for his valuable suggestions during the preparation of an
earlier form of the manuscript, and to Professor R. T. Harling of the
U.8. Air Foree Institute of Technology and other faculty members
of The Ohio State University and the U.S. Air Force Institute of
Technology who have influenced the writing of this book.

The author wishes to acknowledge the able assistance of Mrs. Ada
Williams for the typing of the earlier manuseript and of Mrs. Frances
Borum for tvping the manuseript in its present form.

Crarexce L. JorNzon
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CHAPTER 1

INTRODUCTION

1-1. Historical Development. In the period of years immediately
following World War II, there has been developed a tool which has
had much influence upon the methods of analysis employed by engi-
neers.  This tool is the electronic analog computer, The eredit for its
early development, both in this country and in England, is not easily
placed because of wartime security measures.

If any two men can be credited with the first published use of oper-
ntional amplifiers as computer components, they are C. A, Lovell and
I3, B. Parkinson of Bell Telephone Laboratories. Their use of oper-
ntional amplifiers was in the computer of the M9 antiaireraft-gun
director built by Western Electric Company.* J. B. Russell of
Columbia University noted the cireuits utilized in the M9 com-
puter and brought them to the attention of Ragazzini, Randall, and
Iussell,'t who proceeded to build the first general-purpose electronic
nnalog computer under contract with the National Defense Research
Committee. This work led to the publication of the first article, in
Muy, 1947, describing the operational amplifier as a computer com-
ponent,  G. A, Philbrick is credited by some with having independently
ploneered the use of high-gain d-c amplifiers as computer components
in unpublished work conducted prior to World War I1.

In 1947, the Reeves Instrument Corporation, under a Navy con-
tract, developed a computer which was the forerunner of the present-
dny REAC. At about the same time, many others began the inde-
pondent development of analog computers., No attempt will be made
here to assign credit for the very rapid developments made since the
publication of Ragazzini's first paper. The list of individual contribu-
tars would be quite large and would require a major research effort to
ensure proper recognition for all concerned. Due credit should also
o given to those men responsible for the earlier development of the

* Instruction booklet prepared by the Bell Telephone Laboratories for the
Western Electric MO antinireralt-gun director,
I Heforences denoted by superscripts appenar at the end of each chapter.
1
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2 ANALOG COMPUTER TECHNIQUES

d-e amplifier. Without their efforts, d-¢ analog computers would not
be possible today.

The main purpose of this brief historical review has been to impress
upon the reader the relatively short time between the construction of
the first d-¢ analog computer and its general acceptance as a tool by
engineers throughout the country. Ragazzini's paper was published
in 1947, and by 1949 several computing facilities had sprung into
existence using equipment similar to that described in the paper.

It is the rapid development of the field of analog computation that
has inspired the preparation of this book. The development of new
equipments and techniques has left a gap in the literature such that
each individual when learning to use electronic analog computers must,
to a certain extent, travel the path of learning the hard way. There is
considerable literature available, in the form of papers, that will guide
the computer operator in the application of special techniques to par-
ticular problems, but nowhere does there exist a treatment of the use
of the analog computer sufficiently simple to serve as introductory
material yet sufficiently complete to be useful to the more advanced
machine operator. It is the purpose of the author to attempt to
shorten the period of transition from neophyte to accomplished analog-
computer operator for the engineer learning to use this new tool.

1-2. Classification of Computing Equipment. For many years the
engineer has had available computing devices of various types to aid
him in his work. The classification of the various instruments avail-
able should help to clarify exactly the type of equipment to be dis-
cussed extensively in the following pages.

Computing equipment may be divided into two main classifications:
analog and digital. The analog computer operates by representing the
variables of a problem by physical quantities easily generafed or conirolled
such as shaft rotalions or electrical vollages. The representation is such
as to give continuous correspondence to the variables of the problem
being studied. A digital computer counts and obeys logic rules exacily.
A major difference between analog and digital computers is the aceu-
racy attainable. Accuracy of a digital computer can be extended by
simply carrying more significant figures, whereas the accuracy of an
analog device is limited primarily by the accuracy of individual com-
ponents and of the measuring device.

There are many types of analog computers in use today. These
may be subdivided into two broad categories: general-purpose and
special-purpose. Figure 1-1 shows a few of the analog computers and
the class to which each belongs. The special-purpose computers will
not be considered further in this work. The general-purpose com-
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puters ecan be further subdivided into two classes: the direct- or
physical-analog computers, and the indirect- or mathematical-analog
computers,

The nefwork analyzer, which belongs in the direct-analog class, is the
oldest of the general-purpose analog computers. Its operation is based
upon the analogy of the mechanical behavior of dashpots, springs, and
masses to the corresponding electrical behavior of resistors, condensers,
and inductors.

There are several reasons for the network analyzer’s not having
achieved the widespread use that the electronic analog computer has

Analog
| ]
General Special
PUFWH purpose
| I Planimeters
Direct Indirect Computing bombsights
Gun directors
Link trainers
Scale models
Equivalent D¢ electronic Wind tunnels
circuits analog computers Polynomial evaluators
Metwork Mechanical ; ;
analyzers differential F-BED flight simulator
analyzers
Digital integrating
differantial
analyzers

Fia. 1-1. Classification of analog-computing equipment,

realized. First, the cost of a large analyzer installation is in the same
order of magnitude as that of the large-scale digital computer and the
mechanical differential analyzer ($100,000 to $500,000). Second,
although the equivalent electrical networks for mechanical systems
mny be easily derived, the actual simulation i# much more difficult
hecause of the absence of perfect components. The resistance associ-
ated with inductors, the leakage of capacitors, and the inductance of
renistors all introduce errors into the system. It is the consideration
of such factors that makes the simulation of many systems more diffi-
eult than on the electronic analog computer.

Despite its disadvantages, there are computational tasks for which
ihe physical-analog computer remains unexcelled. An example is the
nnnlysis of electrieal power-distribution systems, Beveral of the major




4 ANALOG COMPUTER TECHNIQUES

network analyzers in the country are kept busy a large portion of the
time on this one type of problem. Other problems such as the dynamie
analysis of structural problems, e.g., an aireraft wing, can be handled
well on this type of computer. New network analyzers will probably
continue to be built by power companies, aireraft manufacturers, and
universities to supplement the capacity of existing facilities.

The mathematical-analog computers include the mechanical differ-
ential analyzers, the digital integrating differential analyzers,* and the
electronie differential analyzers. The mechanical differential analyzers
are capable of accuracies up to five significant figures and usually con-
sist of ball-and-disk integrators having mechanical or electromechani-
cal couplings. They are at present in a very unenviable position of
being squeezed by the accuracy of the digital computer on one hand
and the speed and ease of operation of the electronic differential ana-
lyzer on the other hand. Since the cost of & mechanical differential
analyzer 18 of the same order of magnitude as that of the large-seale
digital computer, it is very doubtful whether another large computer
of this type will ever be constructed.

The digital integrating differential analyzer is a newcomer in the
computation field. The existence of such devices is widely known,
but few people, other than those actively engaged in their operation,
understand their basic principles of operation. An attempt will be
made in Chap. 13 to familiarize the reader with this type of equip-
ment in order that he may be more aware of its capabilities and
limitations,

The electronic differential analyzer is the device that will be treated
most extensively in the subsequent pages. Other than in Chap. 13,
the major effort will be to present the limitations and capabilities of
this class of equipment. Any future reference to analog computers will
mean specifically the electronic differential analyzer.

1-3. Problems Solvable on the Electronic Analog Computer. There
is a considerable overlap of fields of usefulness of analog and digital
computers. In general, a large-scale digital computer can do any job
which can be accomplished on an analog computer, but many prob-
lems can be handled adequately on an analog computer far more
rapidly and easily than by any other means. The correct choice of

*The digital integrating differential analyzer is, by the strictest definition, a
digital computer. The technique of problem preparation is, however, very similar
to that used for the other mathematical analog computers, For that reason the
author has arbitrarily listed the computer as an analog deviee. Bome authorities
prefer to list the digital integrating differential analyser in & category separate
from other computers, i.e, as n digital analog compuier,

INTRODUCTION o

computer is important to the economical solution of problems. Fae-
tors to consider in making the choice are the accuracy required and
the nature of the problem. In general, if more than four-significant-
figure accuracy is required, the electromic analog computer cannot
satisfy the requirements. Few analog computer laboratories can do
that well.

The type of problems best adapted to solution on an eleetronic
analog computer are those involving systems of simultaneous differ-
ential equations, linear or nonlinear, with constant or nonconstant
coeflicients. Fortunately, the complexity of problem setup is increased
only slightly for nonlinear problems and problems involving non-
constant coeflicients. Some problems, other than those which belong
in the category of ordinary differential equations, can be satisfactorily
handled on an analog computer., These will be discussed in later
chapters.

Analog-computer results are normally presented graphically as a
continuous plot of the variable quantities. In many instances this
method of presentation is most convenient for engineering use. The
graphical representation of results has another important aspect. It
i relatively easy for the engineer, as he operates the analog computer,
to visualize the results as the actual dynamic response of the physical
system under investigation. Thinking of the analog computer as just
n mathematieal device is to be discouraged as much as possible. The
usefulness of the computer will be greatly enhanced if the operator
views it as a tool to help him think in terms of the physical system.

1-4. Major Components. The major types of components of an
electronic analog computer are relatively few in number. First, and
the most important components, are d-c¢ amplifiers or eperational
amplifiers, It is these amplifiers that become summers and integralors
upon the addition of proper feedback and input impedances. Second,
il 18 necessary to be able to set coefficients in a problem. As will be
shown later, this may be accomplished either by the use of potenti-
ometers or by adjusting the ratio of feedback and input impedances
npplied to the operational amplifiers. Third, it i8 necessary to have
n set of controls capable of starting and stopping the computation.
In addition, it is desirable to have a control position to perform the
function of holding the problem solution at any point in the solution.
These control operations are performed by a system of relays. Usu-
wlly provision is made in the control system for the automatic appli-
ention of the initial conditions of the problem while the computer
pontrols are in the neser position, A knowledge of the actual oper-
wtion of the operate-reset relays is unimportant for the solution of
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gimple routine problems but is very important to the operator as the
problem complexity increases.

If problems other than those involving linear differential equations
with constant coefficients are to be solved, units capable of multiply-
ing variable quantities must be provided. As problem complexity
increases, there arises more and more frequently the need for arbitrary-
function-generating equipment capable of generating functions not
easily represented mathematically. Similarly, more complex problems
often require the representation of nonlinear phenomena. This is
accomplished by the introduction of diodes or relays into the com-
puting circuits.

The basic components mentioned in the preceding paragraphs,
together with suitable recording equipment, make up the major por-
tion of the equipment used in the solution of problems on analog com-
puters. Each of these components will be treated extensively in suc-
ceeding chapters.

1-5. Summary. It is desirable to emphasize to the beginner that
the understanding of the manner in which an analog computer per-
forms its operations is extremely important. This is true, perhaps
even to a greater extent than for any other computational aid. With-
out an understanding of the actual operation and limitations of the
equipment the operator can never rise above the level of knob twister.
An effort will be made throughout the remainder of this book to present
the fundamental principles of analog computation in & manner that
will allow the reader to attain that understanding easily.
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CHAPTER 2

THE LINEAR COMPUTER COMPONENTS

2-1, Introduction, Theoretically, there are two logical philosophies
along which an analog computer for use in solving differential equa-
tions may be developed. The first of these might be based upon
repeated differentiation, and the second upon a process of repeated
integration. From mathematical considerations, both systems are

e
g — n
: d "-'_J{r Z e dt
'. - =]
Frd]
0 —\
g — "
. € L :’:ﬂ
. =1
&n ‘—'—-/
(5)
"J ﬁ"uﬂ.' [ t'-xt‘:
lc)

Fia. 2-1, Symbolism frequently used to represent the computer components neces-
sary to solve linear differential equations with constant coefficients, All voltages
#; and e, referred to in the diagram are varying d-¢ voltages measured with respect
to & common ground. The components shown are (a) an integrating amplifier,
(h) a summing or inverting amplifier, and (¢) a potentiometer.

andequate. From an engineering approach, however, the process of
differentiation has a serious drawback, Differentiation is a *‘noise”-
amplifying process, and all electronic gear, to a greater or lesser extent,
produces random noise. This noise, however slight, results in a much
higher noise level if differentiation is used. The second possibility,
that of repeated integration, offers no such difficulty; the noise is
smoothed, since integration is an averaging process. [Repealed inle-
gration is the basis of the electronic differential analyzers as we know
them today.
7
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In order to solve a system of linear differential equations with con-
stant coefficients, the following types of equipment must be available:

1. Devices capable of performing the process of integration

2. Devices capable of summing several quantities

3. Devices capable of multiplying a quantity by a constant

4. Devices capable of multiplying by the constant —1
The symbolism of Fig. 2-1 may be adopted to represent the above

devices. Note that the ability to perform sign inversions and to sum
two or more quantities has been given to the integrating amplifier and
to the summing or inverting amplifier. Assuming that the above
deviees are available, they may be interconnected in such a manner
as to produce the solution of any linear differential equation with con-
stant coefficients. The method of connection is illustrated by the
following example.
Example 2-1
dz
di®

Equation (2-1) may be rewritten in the form

+ 0% 4 ae = f0) (2-1)

dix dx

ap = T hig T + fit) (2-2)

Then, assuming that d*z/de® is a known quantity, it may be integrated to gi"-"_n
dz/di and this in turn may be integrated to produce x. From Eq. (2-2) above, it

ax e
d'x g tx @ p \—#:;'ﬂzﬂ'ﬂ!!
dr df ﬂld_:
__._@. s
=t /'d':'?r'
de
+ar

Fig. 2-2. Computer ecircuit showing the component interconnections necessary to
solve Eq. (2-1).

can be seen that, having = and dx/dt, it is only necessary to multiply each by an
appropriate constant and sum them together with f(f) in order to get d"r..’dlt'. the
quantity that was assumed to have been known. The block diagram of Fig. 2-2

illustrates the method. ‘
First examination of the block diagram may lead one to believe that he is reach-

ing down and lifting himself by the bootstraps. This is not the case, however, as
the system operates much as any closed-loop servo system. The rate of change of
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a quantity depends on the magnitude of the quantity and the time history of itself
and its derivatives. [t is very important that one reason out the flow of informa-
tion in the above closed-loop system.

2-2. The Operational Amplifiers. In the above illustrative exam-
ple, the magnitude of the constants a, and a; must be less than unity,

] K, )
Ez : Kz [ f#“" _‘£l Z H.Ejd‘
* =1
ty —————| K.
la)
£] —ﬂ—&'\
" A L == E; Kie;
En '—P“/

b

Fra. 2-3. More complete symbolism representing (a) the integrating amplifiers.
() summing amplifiers. The symbols show the gain associated with each input
of the amplificrs.

gince a potentiometer is only able to multiply by a constant less than
unity. This need not be the case in general, however, as the integra-
tors and summing amplifiers have the ability to multiply by constants
other than unity. The transfer functions of an integrating amplifier
and of a summing amplifier are,

therefore, more completely repre- AP
sented as in Fig. 2-3.
Until now, it has been assumed i High-gain
that the processes of integration % | o< amplifier €
and summation can be performed. A

It might be well at this D'I.'.'ril'lt- to  Fic. 2-4. Block diagram of an opera-
show one means by which this may tional amplifier showing the high-gain
r |..ud A y detailed bl i d-¢ amplifier and the feedback and in-
"f' one. more detal . oc put impedances 2y and z;.

diagram of the above operational

amplifiers 18 given in Fig, 2-4, In the figure — A represents the gain of
the amplifier, and 2, and 2z are the feedback and input impedances,
respectively. If the amplifier is assumed to draw no current at its input
grid, then from Fig. 2-4, Eqs. (2-3) to (2-6) ecan be written

iy =1 (2-3)

1 = E""; L (2-4)

£. - 81 — & {2.5}
2y

te = —Aey (2-6)
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From Eqs. (2-3) to (2-5),
- Er
Substituting Eq. (2-6) in Eq. (2-7) gives
e +e/d _ _ efd t+e (2-8)
2 2y

Bimplifying Eq. (2-8) gives

o __ Ay
e 2r+ 2+ Az (2-9)

Multiplying numerator and denominator by 1/4 and factoring 2 from
the denominator gives the final form of the transfer function

o _u_ 1 _ 2.10
&~ " nlF /4G F]) 10
If A is sufficiently high, a good approximation for Eq. (2-10) is
e _ _ U 1
£ 2 (2. 1

An alternate and simpler derivation of Eq. (2-11) can be made by
assuming that the voltage ¢, is equal to zero in Fig. 2-4. This assump-
tion is valid to a good approximation providing the gain A of the
amplifier is sufficiently high. Suppose the amplifier output e, 1s
restricted to remain within some finite region of voltage, usually
+100 volts. Since e, = — Aey, it is apparent that e, is approximately
equal to zero for 4 3> 1. Further, since the amplifier can be assumed
to draw no current,

and £1-———=i;=—::'—“
Rearranging and solving for e,/e; again gives

b . _ 51 .
P P (2-11)
The derivation of this important result by the latter method has
the disadvantage of not emphasizing the nature of the approximations
made in the derivation. For the present, however, it is not necessary
to discuss the second-order effects of the operational amplifier. These
effects are, of course, important in the design of the amplifiers and in
attempting to understand the limitations of the equipment. They
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are, however, less important to the beginner learning to use the analog
computer.

In later derivations of transfer functions of computer circuits, the
derivations will frequently depend upon the approximation

o

e = — E =0
For most analog-computing equipment the approximation is very good.
The value of amplifier gain ranges from 2 X 10° for some repetitive
cquipment to over 10* for at least one of the better commercially avail-
able computers,

In Eq. (2-11), if z; and 2 are both 1-megohm resistors,

E’ [ — ir e — i
. 2 1 (2-12)
Similarly, if 2 is 0.1 megohm and 2, is 1.0 megohm, the transfer func-
tion is
€ _ oz _ 1 X100
£y Zy 0.1 > 10¢ -
Fiquations (2-12) and (2-13) show that, to change the gain of a sum-
ming amplifier, it is only necessary to vary the size of the input resistor.
(Normally, the feedback resistor is held constant at 1 megohm.)

If z; is a condenser, then*

10 (2-13)

1 1
2y =

ol = 3C (2-14)
e _ 2z 1/pC 1
and i 2~ R = T pRC (2-15)
If ¢ =13 10" farad and B = 1 X 10® ohms,
& _ 1 _ 1
e 10X 10% p (2-16)
or e, = — [e; df (2-17)

Similarly, it may be noted that the gain of an integrator can be varied
by changing the size of the input resistor, just as in the case of the
summing amplifier,

A differentiator could be as easily formed by letting z be a con-
denser and 2, be a resistor: then

s 2y R

—_ . = -t =

& % 1/pC "~

* The equivalence of jw and the operator p is demonstrated in Bee. A-5. A
birief introduction to operator notation is included in Beo, A-3,

—pRC (2-18)
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Differentiation is seldom used in the solution of problems on analog
computers, as the noise amplification produced by differentiation is
very undesirable. At times it is preferable to rewrite a set of differ-
ential equations completely rather than to differentiate. If differenti-
ation cannot be avoided (a very rare situation), then an approximate
differentiation may be used to keep the noise at a usably low level.
A cireuit for producing approximate derivatives will be discussed in a
later section.

So far, the transfer function of the integrator and of the summing
amplifier have been developed without showing that each has the

ig .
. :
[ Tq 2
—
) ¢
Ey
€, Ik
-A
. €] e
"
.
Fa
L0 Iny

F1a. 2-5. Block diagram of an amplifier having a feedback impedance z; and several
input impedances z,, 2, . . . , 2, connected in parallel to the grid input of the
amplifier,

ability to sum several functions at its input. This may be most easily
demonstrated by considering the block diagram of Fig. 2-5.

In Fig. 2-5 the single input has been replaced by several inputs
fay €8y « . . , €a.  DBince the gain of the amplifier is very large, e, may
be set equal to zero, since

6= — 2 (2-19)

The current drawn by the amplifier may be neglected as before:
therefore

tattt - i =1 (2-20)

Replacing i,, 4, . . . , 1. by equivalent expressions, Eq. (2-20) becomes
ba o B, .. L EB_ _ bt .

» + 5 + + . Py (2-21)
- _ ¥, _ ., _&, _ _ € X

or 8y = . £y o £y . En 2y E 2 (2-22)

2-3. Potentiometers. Potentiometers are frequently used in analog-
computer setups to perform multiplieation by a constant less than 1,
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Very often these potentiometers are 10-turn helical wire-wound types
of high resolution and excellent linearity (usually from 1 to 0.05 per
cent of full scale). By means of a vernier dial, parameters of the
problems may be accurately and conveniently set. A loading corree-
tion will have to be applied, in most cases, to compensate for the load-
ing on the potentiometer,

The potentiometers most commonly used in analog computation
vary in total resistance from 10,000 to 100,000 ohms. The lower limit

& Ry
ATATAY
e i €1 R, High-gain &
€ % ¢z | amplifier
la) = ib)

Fia, 2-6. Block diagram of a potentiometer when used as the input to an amplifier:
{a} schematic representation; (b) detailed ecireuit connections; (¢) equivalent ecir-
ouit representation from which the potentiometer loading effect can be ealeulated.

of the potentiometer resistance is determined by the power available
from the amplifier feeding the potentiometer. The upper limit is
tetermined by the loading effect and the mechanical ability to manu-
Incture sufficiently rugged wire-wound potentiometers with total resist-
ances greater than 100,000 ohms.

Potentiometers are used most frequently as the inputs to oper-
ptional amplifiers. Figure 2-6a shows the schematic representation,
nnd Fig. 2-6b gives a more detailed schematic drawing for this appli-
eation, Since A, the amplifier gain, is very large, the approximation
fy = —e,/A =0 can be made, The equivalent circuit of Fig. 2-6¢ is
based on this approximation. From the equivalent circuit the effect
ul potentiometer loading can be easily evaluated.

In Fig, 2-6¢, if Ry = =,

iy ﬂ-R| |
R k. (2-23)
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If, however, K, is a finite value such as is used as the input impedance
of an amplifier, e, # ae;. The loading effect for finite values of R,
can be shown by deriving the transfer function of the potentiometer
with load

e _ aR\R:/(aR, + Rs)
& (1= a)R, + aR,R:/(aR, + Ry) (2-24)
e L (2-25)

& - all, + Ry — a*R,

Subtracting both sides of Eq. (2-25) from the decimal potentiometer

setting a gives an expression for the loading error &:

e=a—-2=a- L

&y alt, + K: — a*R,

The importance of the potentiometer loading error can be seen by

inserting typical values into Eq. (2-26). For a potentiometer of 30,000

ohms total resistance, loaded with a 100,000-0hm load and set at 0.6

of its maximum setting, in Eq. (2-26) a = 0.6, B, = 30,000, and
Rz = 100,000, The error is therefore

e = (0L.600 — 0.559 = 40.041 (2-27)

or approximately 6 per cent. It is obvious that either a correction
must be added to the setting to compensate for loading or the potenti-
ometer must be set with the load applied by comparing it to a known
standard. Both these methods of error correction are commonly
employed. Failure to correct for potentiometer loading can introduce
errors into problems greater than the problem tolerances will permit.

2-4. Computer Design Differences. At present there are quite a
large number of analog computers commercially available. Each of
these differs in some respects from all the others. The basie principles
involved in the use of all the computers is the same, however. A few
hours spent with the instruction manual for a particular make of com-
puter will allow an operator to adapt himself to the peculiarities of the
equipment and utilize it to the full extent of his capabilities.

The symbols representing the computer components vary somewhat
for different computers because of the design differences. The sym-
bolism used thus far has been that commonly used for computers such
as the REAC* and Electronic Associates computers. For example,
each amplifier on the REAC is permanently wired with input and
feedback impedances of fixed value. There is, therefore, no necessity

* REAC—Reeves Electronic Analog Computer, trade-mark of Reeves Instru-
ment Corporation, New York.

(2-26)
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to draw each resistive and ecapacitive element in the patch diagram.
Home computer designs require that the input resistors, feedback
resistors, and eondensers be patched externally on the computer.
Circuit diagrams for these computers must, therefore, show all input
and feedback elements,

The manufacturers of computers utilizing external plug-in compo-
nents have developed small decade resistance elements with trimming
potentiometers for use as the input impedances of amplifiers. These
decade resistors may be adjusted to 1 part in 1,000 by means of a
bridge circuit. They reduce considerably the requirement for potenti-
ometers as coefficient setting devices, as arbitrary gains can be formed
when they are used.

Un computers having fixed gains, potentiometers must be used to
set coefficients at values other than those available. This is not true
when decade resistors are used, since an arbitrary amplifier gain can
be formed by applying the basic relationship e./e; = —z;/z;. If the
feedback impedance is either a 1-megohm resistor or a 1-uf capacitor,
the magnitude of the resistive input required to produce the desired
input gain can be caleculated by the relationship

1

R = desired gain megohms (2-28)

In one respect the decade resistors in use at present are inferior to
precision potentiometers, The decade resistors are usually adjustable
to 1 per eent and rely upon a trimmer potentiometer attached to them
for more precise adjustment. The trimmer potentiometer has a finite
onil resistance associated with it, so that there remains a small but
linite region of resistance values at which the decade resistors cannot
be set.  In most applications, however, this effect is negligible.

Two computers that show a good contrast in the use of internally
wired fixed resistors and external plug-in resistors are the REAC, man-
ulnctured by the Reeves Instrument Corporation, and the GEDA,*
manufactured by the Goodyear Aircraft Corporation. The REAC
uses fixed resistors throughout; however, provision has been made to
nllow the use of external computing impedances on some of the ampli-
fiers. The GEDA (L-3 model) provides a few permanently wired
resistors but depends to a great extent upon the use of external plug-in
resistors,

T'wo notations for drawing computer diagrams have evolved from
the basic design differences of the various computers. When using

* UGEDA—Goodyear Electronie Differential Analyzer, trade-mark of Goodyear
Alreralt Corporation, Akron, Ohio,
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computers with fixed internal resistors and, therefore, fixed input gains,
the symbolism given in the middle column of Fig. 2-7, under the
heading of REAC, is most convenient. The symbolism under the

Computer REAC GEDA

—

{a)
Integrator 0.4 2

¢, =~fl10e1 + 0.4ezidt

05
0.
" o Oy o A%
Summer € €a
—_— 0.1
€= —[2e;+e;) e, —(2¢y+e3)
1
lel | €
High-gain € s
IEI-:.:E;m ifier 0.25
(input but €2 €2
no feedback
impedances) e, = =Aley ey~ e3)/5] e, =A e +ley—ez)/5)

=A =amplifier gain =A = amplifier gain

id)
High-gain e s & £
d-¢ amplifier
(no inputs
or feedback

impedances) e~ =Ag; €= ~Ag; )
=A - amplifier gain =A =amplifier gain

Fra. 2-7. Notation for drawing computer diagrams: middle, far computers with
fixed internal resistors; right, for computers with plug-in resistors. Values of
resistors and capacitors are given in megohms and microfarads.
heading GEDA is more convenient for those computers using predomi-
nantly plug-in resistors. In all cases the notations for both REAC
and GEDA shown in the same row of Fig. 2-7 imply identical circuit
configuration.

Bome explanation of the notation used in rows ¢ and d in the figure
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4 necessary.  In ¢ is represented a high-gain d-¢ amplifier with input
resistors but with no feedback impedances shown. When this eireuit
is considered alone, the magnitudes of the input resistors are unimpor-
tunt, as the amplifier is assumed to draw no current. The high-gain
nmplifier is never used in the simple form shown, however, but is always
n part of a more complex circuit such as a division circuit. When it is
used in that manner, a feedback path is present through a multiplier
unit and the input gains (or resistances) have significance. It isimpor-
tant to note that the gain inserted in the REAC symbol at each input
of the high-gain amplifier corresponds to the reciprocal of the input
impedance in megohms.

In some applieations it is desirable to use computer amplifiers in a
vompletely general manner: i.e., with arbitrary combinations of resis-
tors and capacitors as feedback and input elements. In these cases
It is necessary to show all the impedances that are connected to the
mmplifier. In Fig. 2-7 the high-gain amplifier is shown (row d) as a
sogment of a cirele for both REAC and GEDA computers. It should
be emphasized here that for computers such as the GEDA the simple
trinngle is usually used as the symbol for a high-gain d-¢ amplifier.
The circular segment is used here, however, to prevent any possible
vonfusion between the REAC symbol for a summing amplifier and the
similar symbol frequently used to signify a high-gain d-¢ amplifier.

(ther than for some repetitive computers, which will be discussed
soparately in a later chapter, one or the other of the two notations
mppearing in Fig, 2-7 can be used in preparing computer diagrams for
My existing analog computers. It is true that the more detailed
fotation in the right-hand column ean be used for all computers, but
tho brevity of the REAC notation is one big advantage favoring its
s where it is applicable,

Hoth notations have been wid ely used in the literature, and therefore
e reader should become completely familiar with both. Throughout
Whin book both notations will be used, to aid the reader in gaining
Iumilinrity with both. In later chapters the notation commonly used
with fixed resistor computers will be adopted almost exclusively
booause of its brevity.

#4-6. Concluding Remarks. The derivation of the transfer funetion
Wl the operational amplifier is treated in detail in a large number of
pupors discussing the elementary phases of analog-computer appli-
Mlion,  BSeveral papers and books treating this phase of analog-

Mmputer operation are listed at the end of this chapter,'—4

Information concerning the characteristics of the various ana-
computers can best bo obtained direct from the manufacturer,
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Instruction books for the computers are a very good source of intro- REFERENCES
ductory material for analog computation. I. Korn, G. A., and T. M. Korn: * Electronic Analog Computers,” MeGraw-Hill
Book Company, Ine., New York, 1952,
PROBLEMS 2. Ragazzini, J. R., R. H, Randall, and F, A, Russell: Analysis of Problemas in
Dynamics by Electronie Circuits, Proc. IRE, May, 1947, pp. 444-452.
2-1. Give the equation expressing the output as a funetion of the inputs fa 4. Pickens, D. H.: Electronie Analog Computer Fundamentals, Proc, I RE, vol. 25,
each of the circuits shown in Fig. P 2-1. Values of resistors and capacitors a no. 3, pp. 144-147, August, 1952,
listed in megohms and microfarads, 4. Boroka, W. W.: “ Analog Methods in Computation and Simulation,” MeGraw-
1 05 Hill Book Company, Ine., New York, 1954,
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2-2. Plot a loading correction curve for a 30,000-0hm potentiometer, loaded
a 0.1-megohm resistor.

2-3. Plot a loading correction eurve for a 0,1-megohm potentiometer loaded |
& 0. l-megohm resistor,
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CHAPTER 3

TIME- AND AMPLITUDE-SCALE FACTORS

3-1. Factors Influencing the Choice of Time Scale. The two most
important factors to consider in preparing a system of equations for
analog-computer solution are:

1. Time-scale factor

2, Amplitude-scale factor
If either of these factors is not properly handled, an analog computer
cannot give satisfactory results.

One of the attributes of an electronic analog computer that con-
tributes greatly to the versatility of the equipment is the ease with
which the time scale of a problem can be changed. When the time
scale of a problem is changed, the machine-problem variables remain
proportional to the corresponding variables in the physical system.
The rates at which the changes oceur are changed, however, so that
the solution of the problem will be either slowed or speeded. Fortu-
nately, there is usually a considerable range of speeds at which a par-
ticular problem may operate satisfactorily, but often many factors
must be carefully considered to achieve any results at all.

In choosing a time scale at which to operate a particular problem,
many factors must be considered. Usually these conflict and a com-
promise must be made. Some of the factors to be considered are:

1. Errors in integrations are accentuated by long computer runs.

2. Blowly wvarying outputs of integrators are invariably associated
with low-input voltages and often with very low potentiometer settings
in the problem.

3. Higher frequencies contribute to phase shift in the operational
amplifiers and have the same influence as *“negative damping.”

4. Servo devices used for multiplication operate satisfactorily only
at quite low frequencies.

5. The dynamics of recording devices must be considered so that
transients in the recorder response do not affect the recording.

In the succeeding paragraphs, each of the above factors will be dis-

cussed in more detail,
20
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Even if perfect integrating amplifiers were available for analog com-
puters, errors in integrations would still result. In fact, the greatest
error 18 usually due to the uncertainty present in setting a voltage
that is to be integrated. Suppose it is desired to integrate a con-
stant A. The voltage representing the constant can be set with an
necuraey limited by the precision of the device used as a measuring
instrument. Invariably, some error ¢ will exist in the setting. The
output of the integrator will therefore be

J) = J(A + & dt = At + « (8-1)

T'he error gignal is multiplied by the time of the integration.

The actual integrators used in analog computers are not perfect.
Frrors occur because of the finite gain of the amplifier, the mismatch
of feedback and input elements, and the very small but finite grid
current flowing at the input of the amplifier. All these error terms
nre similar in effect to e above. The effect of these errors is decreased
by keeping computing times small.

The error associated with the setting of a potentiometer is approxi-
mately a constant; therefore, the percentage error is much less for a
large setting than for a small setting. Slowly varying integrator out-
puts imply small input voltages. As will be seen later, the time-scale
[nctor determines the relative magnitude of input and output voltages
of integrators for any particular problem.,

A factor which indicates that problems should be run at slow speeds
I the phase shift that oceurs in the d-c amplifiers at higher computing
speeds.  This phase shift can be attributed to the distributed capaci-
tance throughout the amplifier cireuitry. A relatively important fac-
tor in the design of d-c amplifiers is keeping phase shift small over as
wide a frequency range as is possible.

Most analog computers will show no effects of amplifier phase shift
in the computer results until & certain frequency is reached, The fre-
fueney at which phase shift becomes troublesome is a funetion of the
number of amplifiers in the computing eircuit and is thus different for
dillerent problems. It may be helpful to state that a model C-101
IWEAC will usually start to show the effects of phase shift at angular
frequencies of about 20 radians/sec in a sinusoid generator formed of
three amplifiers. The effect will appear as a slight divergence in the
computer results. The frequency at which divergence first oceurs
viries with different makes of computers. It is helpful to the oper-
mtor to check this critical frequency for the particular computer he is
using, This will give him a basis for choosing the proper operating
apoeeds for problems to be run on that computer.
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Servomultipliers frequently impose a frequency limitation on the
operating speeds of problems. These devices operate by continuously
positioning potentiometers to positions proportional to their input
voltages. Needless to say, the rate of change of the input voltage
must remain sufficiently small that the servo ean aceurately follow it.

High-accuracy servomultipliers usually have poorer response rates
than have less precise servomultipliers. As a rule of thumb, however,
it may be stated that the mazimum frequency giving a flat response
for various servomultipliers ranges from 1 or 2 eps for the slower
multipliers to 10 cps for the fastest available ones. For any particu-
lar application, other design characteristics of servomultipliers may
become the limiting factor in their operation. These factors are the
maximum acceleration rate and the maximum angular rate of the
servomultiplier unit,

3-2. Determination of Approximate Problem Frequencies. In
selecting the time scale at which to operate a problem, some infor-
mation regarding the form of solution of the problem is necessary.
It is desirable to know the frequencies and the exponential time con-
stants which exist in the solution. In many instances, familiarity with
the system to be represented on the computer will supply the necessary
estimates of frequencies and time constants. Even though nothing is
known about the physical problem, sufficient information can usually
be obtained from the mathematical representation with little expendi-
ture of effort. This is true particularly in the case of systems of linear
differential equations.

If the roots of the characteristic equation of a system of equations
are known, the necessary information is immediately available. In
most cases, however, the roots of the characteristic equation are
unknown, and the labor involved in their determination is prohibitive
when considered simply as an aid in the setup of the equations for
analog computer solution. To be useful, any method of estimating
frequencies must be easy to apply and must give consistently usable
results. Fortunately, such a scheme of approximating the frequencies
involved in a problem solution does exist.

Consider the system of equations

a, :;': + asr = asy (3-2)

by Y+ bs B - by = bz + bz + by (3-3)

ﬂni—!::'l'ﬂ:%'i“ﬂﬂ'ﬂii’ (3-4)
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From the above system of equations, the characteristic equation can
bt obtained by the expansion of a three-by-three determinant, The
roots are then obtainable by the solution of a fifth-degree polynomial.
(Ibviously, the method is not attractive. A simple approximation of
the solution frequencies can be obtained by finding the time constant
or the undamped natural frequency of each equation when removed
completely from the system and treated as a homogeneous equation.

I‘'or the above system of equations the homogeneous equation corre-
sponding to Eq, (3-2) is

dr
ity di + asx = 0 (3-5)
The solution of Eq. (3-5) is
T = Aglovel . (3-6)
The time constant is therefore
= T -
T o= s (3-7)

Correspondingly, the undamped natural frequencies of Eqs. (3-3) and
(4-4) can be immediately written down if it is recalled that a second-
order differential equation is expressable in the form*?

d*g d#
dg T Heagp +waid =0 (3-8)

where w, is the undamped natural frequency and [ is the damping
rtio.  The undamped natural frequency of Eq. (3-3) is

in, = .Jg:: (3-9)

Himilarly, the undamped natural frequency of Eq. (3-4) is

oo, = \E (3-10)

The frequencies obtained in this manner are not the system fre-
fuencies, but experience has shown that the results are usually ade-
iuate for use in determining a need for a time-scale change. After
obtaining the undamped natural frequencies of the uncoupled equa-
tions, it is then possible to arrive at a compromise time scale for the
problem, The factors mentioned in See. 3-1 must be considered in
munking this choice.

* The general form of the differential Eq, (3-8) is discussed in Sec. A-2.
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3-3. Approximate Frequencies of Higher-order Systems. The
large majority of systems of ordinary differential equations that arise
from the consideration of physical systems are composed of first- and
second-order equations. Oeccasionally, however, an engineer is con-
fronted with differential equations of higher order than the second.
In order to determine the desirability of a time-scale change, a knowl-
edge of the undamped natural frequency is necessary. The rules for
obtaining the undamped natural frequency of higher-order systems
are much less widely known than those for a second-order system.
Routh's stability criterion** can give the formula for the undamped
natural frequency of a third-order differential equation. It is strongly
recommended that the engineer working with analog-computer equip-
ment become familiar with Routh’s criterion for determining system
sta.l::ilit}:. Reference will again be made to this simple means of deter-
mining system stability in the section dealing with the checking of
computer results,

Applying Routh’s criterion to the characteristic equation of a third-
order system represented by

P+ ap' +ap+a=0 (3-11)
gives the coefficient table
p? 1 a;
p* dz @
1 | dyls — Eu
P as
P’ (g

In order for an undamped oscillation to exist, the third row of the
table must be zero or ay = aa:. For this condition, the auxiliary
equation 1s

azp* + ag = 0 (3-12)
The roots of Eq. (3-12) are
. Jag
p=%j le—: (3-13)

The results may be restated. For a third-order system expressed in
the form of Eq. (3-11), the undamped natural frequency is equal to
4/ /s, and the condition under which undamped oscillation can exist
is that ag = a;@s. If all the coefficients in Eq. (3-11) are positive, then
the condition for stability is that as < a,as.

* Routh’s stability eriterion is stated without proof in Bee. A-4,
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It is very interestirig to note at this point that the undamped natural
frequency of a third-order system is obtained by the application of the
same formula as for a second-order system, namely, the square root of
the zero-order coefficient over the second-order coefficient,

For equations of higher order than the third, the most practical
means of determining the desirability of a time-scale change is by con-
sidering the effect the change would have in making the magnitude
of the coefficients of the higher-order terms more nearly equal the
magnitude of the lower-order coefficients. Having the magnitude of
the higher-order coefficients near the magnitude of the lower-order
coefficients ensures having problem frequencies of the order of magni-
tude of 1 radian/sec.

3-4. The Influence of Recorder Characteristics on the Choice of
Time Scale. Many beginners have a tendency to neglect recorder
characteristics completely when choosing a time scale for a particular
problem. Recorder characteristics must be considered if the computer
results are to be useful. It is ridiculous to spend the time and effort
necessary to set up a problem on a computer and then find it neces-
wary to rescale the problem because satisfactory recordings cannot be
made,

The types of recording equipment available for analog computers
wre extremely varied. In general most of the devices ean be divided
into three categories: servo-driven recorders, galvanometer-type instru-
ments, and cathode-ray oscilloscopes. Servo-driven plotting devices
nre relatively precise but slow in operation. A plotting speed of
B in./sec is considered quite good for this type of equipment. Very
few servo-driven recorders can adequately record frequencies as high
ne 2 or 3 cps at relatively large plotting amplitudes. For different
imputs, the servo-driven recorder will be limited in usefulness by one
ol three factors: its acceleration rate, its maximum writing speed, or
Its Ifrequency response. In designing recorders of this type, it is
extremely important that the inertin of moving parts be kept as low
e possible to improve these three factors.

Cinlvanometer-type recording instruments usually have much higher
Irequency-response characteristics than do servo-driven recorders.
They consist of two types: direct-inking recorders, and hot-wire
recorders. In either type, the writing arm is driven by a galva-
nometer movement and the paper is moved at a constant rate past
the writing instrument. The direct-inking type has the disadvantage
of plotting on a curved coordinate system to coincide with the are of
the pens. The hot-wire recorder uses a heat-sensitive paper. The
paper is drawn across a raised straight edge, allowing the plot to be
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made in a rectangular coordinate system. The chief disadvantage of
the hot-wire recorder is the relatively higher cost of the paper.

Galvanometer-driven recorders have linear frequency-response char-
acteristics up to about 300 cps when adequate frequency-compensation
networks are provided in the amplifiers. They are limited, however,
to plotting a variable function against the independent variable of the
problem. Usually, these recorders have provision for the plotting of
one to six variables simultaneously on adjacent channels.

The greatest disadvantage common to most galvanometer-type
recorders is the relatively low-accuracy plots that they produce. The
graphs produced by most galvanometer-type recorders can be read
accurately to only about 5 per cent of full scale.

The high-frequency response of galvanometer recorders does not
give the computer operator a free choice of computing speeds. The
speed at which the paper is drawn past the recorder pen can be the
eritical factor in choosing a proper operating speed for a problem.
Some recorders have only one paper speed, while others have as many
as eight or nine different speeds, ranging from 1 mm/se¢ to 10 ¢m/see.

Cathode-ray oscilloscopes are usually used to view the solution of
problems solved on repetitive computers. Permanent recordings of
the oscilloscope display can be made with an oscilloscope camera.

In summary, it can be stated that some of the factors mentioned
above indicate that problem operating speeds should be high; others,
that they should be low. A compromise must therefore be made.
Problem frequencies of approximately 1 radian/sec in machine time
are often considered as optimum. Linear problems using galvanom-
eter-type recording instruments ean usually be run appreciably faster
than this., Problems using servomultipliers and servo-driven recorders
s rszerzes frequently must be slowed down to provide lower
problem frequencies than 1 radian/sec. No fixed
Ex rules apply, but a frequency range in problem

golutions of 0.02 to 3.0 cps will usually be suitable.

Example 8-1. As an illustration of the proper choice of
M time-scale factor, consider the simple mechanical system
lr: illustrated in Fig.3-1. The mass M of the spring pendulam
is 0.02 slug, and the spring constant K is 20 |lb/ft. The

equation of motion of the system is therefore

Fia. 3-1. Spring pen-
dulum with the
physieal constanta

M = 0.02 slug and (3-14)

K = 20 Ib/it. B}

By referring to the form of the second-order differential
equation as expressed in Eq. (3-8), it can be immediately determined that the
undamped natural frequency of oscillation of the system is

diz
ﬂ'.ﬂﬂﬁ + 20z =0
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o = «J% = 31.6 radians/sec

This frequency is too fast for best operation of most analog computers (with the
exception of the repetitive computers), and thus the time-scale factor of the prob-
lem ghould be changed in order to slow down the computer solution of the problem.

As previously stated, problem frequencies of 1 radian/see are considered opti-
mum for the computer, but other factors influence the final choice of time-scale
factor for & particular problem. If the results of the problem are to be recorded
on A servo-driven plotting board, then frequencies somewhat less than 1 radian /sec
are best, If the results are to be plotted on a galvanometer-type recorder, then

frequencies somewhat greater than 1 radian /sec are adequate and will reduce the

solution time of the problem on the computer.

Assuming that the problem results are to be recorded on a
servo-driven recorder, glowing the problem solution by a
factor of 50 would be a good choice of time-scale factor,
This would give & new undamped natural frequency for the
machine solution of w, = 0.63 radian /fesc. This choice ia
vompletely compatible with the capabilities of the computer
and the recorder to be used,

If a galvanometer-type recorder were used in recording
the results of the problem instead of a servo-driven recorder,
then a better choice of time-scale factor would have been to
slow the problem by a factor of 10 rather than 50. This
would have resulted in a solution frequency on the com-
puter of 3.16 radians /se¢ or approximately 0.5 cps. Again
this frequency is compatible with the computer and recorder
sapabilities, but only one-fifth the time would be required
to solve the problem that was required in the previous case,
This time saving ecan be very important when it is desired
to solve a problem for a large number of different
parameters,

Example 3-2. As a second illustration of the proper
choice of time scale, congider & mechanical system repre-
senting a single wheel of an automohile. In this problem
it ia desired to determine the system response to a periodie
ilisturbance. A complete representation of the automobile
puspension system is much too complex to be congidered at
this point and would only serve to confuse the beginner
with needless details,. The system to be considered is as
lustrated in Fig. 3-2. M, represents one-quarter of the mass
il the sutomobile; K, is the spring constant of the main
apring; ) is the shock-absorber damping constant; M, is

M| n

o Ky

M, 1_"“-’

Kz

113"1[1]

Fig. 3-2. Simplified
representation of a
single wheel of an
automobile suspen-
gion system. M,
equals one-quarter of
the masa of the auto-
mobile, M, i8 the
mass of the wheel and
axle ecombined, K,
and 7y are the con-
stants associated
with the main spring
and shock absorber,
respectively, and K,
ia the linearized
spring eonstant of
the pneumatie tire.

the muss of the wheel and axle: and Ky is the spring constant of the tire (assumed

b b linear for simplicity).

The differential equations of motion of the system are

H.%+ﬂ,(%—dﬁ! + Ki(z: — 24) = 0
"‘%_. + 0 (dn -%) + Ki(#s = 2) + Ka(za — 22) = 0 (3-15)

2= 2(l)
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The magnitudes of the physical constants are

M, = 25 slugs K, = 1,000 Ib /it
H: = 2 alug:a H: = 4,5':“] Ib/ft

It iz desired to determine the magnitude of the damping coefficient of the shock
absorber necessary to produce a minimum translational motion of the mass M, for
& periodical displacement z; of magnitude 0.2 ft and duration 0.01 see. The fre-
quency of the recurring step displacement shall be approximately the undamped
natural frequency of the main mass M,,

The first step involved in the computer setup of any problem is the determina-
tion of the approximate frequencies to be encountered in its solution. From these
the best choice of time-scale factor can be established, The undamped natural
frequency of the main mass in this problem is

(K,

W,y = w;‘l_f, = §.33 radians /sec

(3-16)

The undamped natural frequency of the mass My, when all coupling terms in the
svetem are neglected, is

K, + K,

= 52.4 radians /sec
My

g,y =

Since the problem is linear and a galvanometer-type recording device is adequate,
the problem can be operated at a speed such that frequencies appreciably higher
than | radian /see are present.  The frequency of the mass M, (52.4 radians/sec)
18 too great, however, for best computer operation. Furthermore, the problem
setup is complicated by the high gains that would be necessary if the problem were
run at natural time. On the other hand, to slow the problem down considerably
would reduce the frequency of the z, equation below the optimum. The low
frequencies encountered would require low potentiometer settings to be used, and
there would be some loss of accuracy because of this. A compromise must be
made, and the logical choice seems to be to slow the problem by a factor of 10,
giving new undamped natural frequencies of w.,,; = 0L63 radian /per machine sec
and w,,,, = 5.24 radians per machine see.

At this time it is necessary to leave this problem. Its setup will be
completed in a later section after the necessary techniques are made
available,

3-6. Performing the Time-scale Change. The actual mechanism
of making a time change is very simple. To accomplish a time-scale
change it is only necessary to make a substitution of variable for the
independent variable in the problem. If it is desired to change the
time scale of & problem by a factor a, where a is a positive constant
and { is the independent variable of the problem, the substitution
t = rv/a is made. If a is greater than unity, the solution is slowed
by the factor a. If a is less than unity, the problem iz speeded up
by the factor 1/a. It is essential that the same variable substitution
be made throughout the entire problem or all physical significance of
the problem will be lost,
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Upon making the substitution ¢ = r/a in a system of differential
cquations, the derivatives become

d d d

TRl = R % (3-17)
since dir/a) = (1/a) dr, for @ = constant.
Similarly, ,;;Eg! - % (a d%) = u’di; (3-18)
d» L dn
nnd p TRl = (3-19)

Example 3-3. As an example of performing a time-seale change, consider the
svond-order differential equation

dir dr

o+ 2% 416 = 100 (3-20)
with the initial conditions

20) =0 @) =1 (3-21)

The undamped natural frequency of the system can be obtained by considering
the homogeneous equation. The undamped natural frequency is found to be

wy = % 16 = 4 radians /sec (3-22)

To slow the problem down by a factor of 2, the variable substitution required is
{ = v/2, Performing this substitution gives

dir dar ; r ;
4dft+4d‘l'+] F"f(i) (-25)
with the new initial eonditions
dr |
z(0) = 0 T (D) = 3 (3-24)

Fhe undamped natural frequency of the new equation is found to be

wa = V18] = 2 radians/machine see (3-25)
The desired time-seale change was accomplished,

It should be emphasized at this point that, if a time-seale-factor
change is performed upon a problem, it should be taken into consider-
ntion when interpreting the results of a problem. A very common
error made by the beginner is to forget that the recorded derivatives
nre derivatives with respect to = rather than (. It is always neces-
wary to perform the time-scale-factor change in reverse upon the time
semle and the magnitude of the derivatives before labeling the graphi-
enl results of a problem solution,
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Example 3-& As a second illustration of the process of transforming the time-
scale factor of an equation to one more suited to solution on an analog computer,
consider Legendre's equation

1 —e % -2 4 nn+ 1y =0 (3-26)

It is desired to find the solution of the equation over a range of independent vari-
able 0 < ¢ < 0.99 for n = 1; then at { = 0, the undamped natural frequency is

. = \l'“':l"_"",” = +/2 radians/sec (3-27)

At i = 0.99, the undamped natural frequency is

nin + 1) 2 :
- e = 10 radians /sec (3-28)

Since only a period of 0 < { < 0.99 sec is of interest, it seems desirable to slow the
solution down by a factor of 10, Making the substitution { = ¢ /10 in Eq. (3-26)
gives

v dly _ o, dy -
(1-ﬁ) 100 =25 — 2r 5”4 nln 4+ 1y = 0 (3-29)

The solution of the problem for the range of 0 < +/10 < 0.99 will now take 9.0 see
on the computer.

3-6. Choice of Amplitude-scale Factor. The choice of proper
amplitude-scale factor for a problem is as important as the choice of
time scale, It should be made following the time-scale change, if any,
but before any attempt is made to prepare a block diagram of the
problem.

The choice of proper amplitude-seale factor should be made wi
the following points in mind:

1. Voltage levels throughout the machine should be kept at an opti
mum value; for instance, the normal operating range of a REAC i
+100 volts, Maximum voltages near zero should be avoided, a
maximum voltages in excess of 100 volts should be avoided to preven
overloading of the amplifiers. This is not an absolute limit but i
subject to the load placed on the amplifier. In determining se
factor, if an attempt is made to keep all peak voltages in the neigh
hood of + 50 volts, satisfactory operation will usually be achieved e
if considerable error is made in estimating the maximum magnitude
the problem variables,

2. The choice of amplitude-scale factor should be made in & man
that will preserve, as much as possible, the relation between the physi
cal system and the system wired into the computer. This permits
ready interpretation of voltages read from the computer directly in
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terms of the units of the problem, i.e., feet, pounds, seconds. This
ready cross-reference from voltages to the units of the problem should
he simple enough that little or no hand computation is necessary.

3. The system used in adjusting scale factor should be sufficiently
simple that no confusion will arise in its use.

In arriving at a workable scheme for adjusting scale factor, the
above three considerations should be taken into account. The first
consideration must be satisfied or the seale factor or time-scale change
has not been properly chosen. All the commonly used schemes for
adjusting scale factor are equally able to fulfill this requirement;
therefore, it will offer no influence in our choice of scheme. The
second and third considerations, relation of machine voltages to prob-
lem units, and simplicity, must then be the deciding factors.

One scheme that is sometimes used is the association of a scale
factor, say a,, with each problem variable such that

4 < 1 machine units
* = maximum expected value of x| physical units

(3-30)

where a machine unit is assigned a value of 100 volts. This system
has a natural disadvantage, since, for a system expressed in terms of
z, y, and #, the following relationship between machine units and
problem units might exist:

1 machine units

4= = 3 feet
_ op Mmachine units
ay = 20 - radians (3-31)
machine units
o =4 feet

Indeed, even the scale factor associated with the same wariable in
different parts of the same problem may vary. With this system, the
machine operator is forced to think mainly in terms of machine units
rather than in units of the problem itself, and the problem loses some
of its physical identity.

A scheme that permits a much more natural approach to scale-factor
adjustment is to assign a machine unit to be equal to 1 volt; therefore

machine units volts

@ = Ohysical units _ physical units ! (3-32)
Multiplication of each of the problem variables, z, y, 8, . . . , by the
appropriate constant a,, a,, a4, . . . , changes the units of the prob-

lom from the physical units to units of volts. The form of the equa-
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tions remains exactly the same, however, and no labor is involved
sinee all the dimensional constants are equal to unity.

The great advantage of this system lies in the exact equivalence
of the machine equation to the physical equation. Upon reading a
voltage from the computer, the operator can immediately visualize the
voltage as representing a certain number of units in the physical sys-
tem. To translate volts into problem units, the operator needs to
know only the number of units (volts) of the machine variable repre-
sented at the point where the voltage is read. For example, suppose
20 volts iz measured as the output of an amplifier which supplies 408
in a problem, If the dimensions of 4 in physical units are radians, then

408 = 20 volts = 20 radians (3-33)
f = 0.5 radian (3-34)

Up until now, nothing has been done that in any way adjusts the
voltage level of a problem on the computer to the proper operating
range. The actual voltage-amplitude adjustment is made by multi-
plying each equation through by an appropriate constant. In order
to determine the proper constants by which to multiply the equations,
it is necessary to know the maximum wvalues each variable and its
derivatives can take on during the solution of the problem. Means
of approximating the size of problem variables and choosing the proper
equation scale factors are considered in subsequent sections of this
chapter.

3-7. Approximating the Magnitude of the Variables of a Problem.
The guess one makes as to the maximum size of the variables of a
problem need not be * picked from a hat.” Intelligent guesses can be
made from a knowledge of the physical system and from the mathe-
matics of the problem statement. For example, the equation repre-
senting the aileron motion &, of an aircraft in flight is of the form

o | 0 By s = 1) (3-35)

1 lﬁ:‘!——l_ﬂldl

where f({) represents the control forces acting upon the aileron. The -

limited statement of the problem made here implies the following:

1. &, will probably not exceed approximately 20 to 30° or the prob-
lem could not represent the physical system.

2. The undamped natural frequeney of the above equation is

Wy = Jz:: (3-36)

If w, is greater than unity, the maximum value of di./dt is approxi-
mately proportionately greater than the maximum value of §,. Corre-
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spondingly, if w, is less than unity, dé,/dt (max) is proportionately less
than 3,.

The validity of the above assumption regarding the magnitude of
the derivative of 8. can be seen by considering the sinusoidal funetion

f(t) = sin wyf (3-37)
Differentiating Eq. (3-37) successively gives
% =y 008 l‘.l."|l'.- {3—33}
THO o o sin (3-39)
T;% I = |1'.-.Il|" Cos Edj_!l (3-40)

It may be immediately observed that the maximum magnitude of the
first derivative 18 w; times greater than the maximum magnitude of the
variable f(t). Correspondingly, the second derivative has a maximum
magnitude w,* times as great as the maximum value of f({), and the
nth derivative has a maximum «;* times as great as the maximum
value of f(f). Generalizing the above results, it is apparent that, if
the form of a problem solution is sinusoidal in nature and if the damp-
ing is not great, the maximum value of the derivatives of a variable
may be predicted from a knowledge of the maximum magnitude of the
variable and the frequency of oscillation.

The accuracy of the estimation of the maximum magnitude of deriv-
atives obtained in this manner is dependent upon how closely the fre-
quency 18 known and how much damping is present in the system.
The presence of damping makes the values found for the derivatives
conservatively large, so that the estimates obtained are the upper
limits of the magnitudes of the derivatives.

After assigning a maximum wvalue to each of the variables in the
problem, it i8 necessary to multiply each of the equations by an appro-
priate constant. The constants are chosen so that the voltage appear-
ing on the output of the amplifiers used in the problem will not cause
them to overload and yet will be as high as possible in order to keep
the signal-to-noise ratio large. The procedure is illustrated in detail
by the following examples.

Example 8-6. The equations of motion representing a “tuned " pendulum free
to translate in the vertical direction and to rotate about its axis are

d*z

i + 1,000z — 1000 = 0 (3-41)
E+1,nmr-lm;-u (3-42)
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The units of z and # are inches and radians respectively, and the assigned initial
conditions are

2(0) =2in. 3 (0) = 37 (0) = 0(0) = 0 (3-43)

The physical system represented is ghown in Fig. 3-3.

The first step in the setup procedure is to decide how fast the problem should
operate. For a problem of this type, a Brush recording is adequate; furthermore,
it is desirable to record the results for a relatively long period of time in order to
observe the influence of the coupling in the system. Problem frequencies of
approximately one cyele per second seem to be a good
choice for this problem. BSufficient detail will be
obtainable from the graphical results, and yet exces-
sive plotting time will not be required. Upon check-
ing the undamped natural frequencies of the system,
wy i8 found to be

we = % 1,000 = 31.6 radians sec  (3-44)
for both the x and # modes, and the frequency is

_f-%%ﬁnpﬁ (3-45)

Fra. 3-3. Tuned tm'niulml
pendulum capable of illus- Slowing the problem down by making the substitu-

trating the transfer of en-

ergy from one mode of os- tion £ = r/5 gives the new equations

i oeiatn Fo o G+ L0 =100 =0 (40
plete energy transfer the @

ratio of the moment of 25 == -+ 1,0006 — 100z = 0 (3-47)

inertia and torsional sprin .
;Tl:ntnnt, must equnlp 1,}_-.: The new undamped natural frequencies of the system

ratio of the mass and are

z:::::lntmnnl Bpring con- by = Lg%ﬂ = 6.33 radians /sec (3-48)

This information may now be used to aid in choosing the proper amplitude-scale
factor for the problem. Since w, is approximately 6 radians /see, dz/dr (max) is
approximately six times greater than x (max), and dé/dr (max) is appm:imu_ully
six times larger than @ (max). From the initial conditions of the problem it is
found that, at ¢ = 0, all the system energy is in the form of potential energy in the
spring, which is stretched to a length of 2 n. Therefore, —2 < x < 2in,, ‘and an
approximate range of dz/dr can be established as —12in. /sec < dr/dr < 12 in. /eee.
From a knowledge of the behavior of the system (and the symmetry of the equa-
tions) it can be predicted that the ranges of @ and of d8/dr are

—2 radians < @ < 2 radians {3-49)

—12 radians /sce < db/dr < —12 radianssec {3-50)

iplying the lem wvariables by the appropriate dimensional con-

ut.af: ;ﬁult;ﬁlﬁ relamhipa between ti.:'u dimensions of the machine vari-
ables and problem variables are obtained:

1 volt = 1 in. 1 volt = 1 in,/sec (3-51)
1 volt = 1 radian 1 volt = 1 radian /sec
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Sinee it is desirable that all amplifiers shall have a maximum output of approxi-
mately 50 volts, it can be immediately determined that 25z, 258, 4 dz/dr, and
4 db/dr are satisfactory as outputs of amplifiers. In order to avoid using a poten-
tiometer between the amplifiers, since only gains of 1, 4, and 10 are available on a
REAC, these quantities may be changed for greater convenience, giving 20z, 209,
Sdz/dr, and 5d6/dr as the desired outputs of their respective amplifiers. For
ease in setting up the equations in the form of a block diagram, Eq. (3-48) can be
multiplied by 0.2 and Eq. (3-47) can be multiplied by 0.2, giving

5%% + 200z — 200 = 0 (3-52)
d%o
555 + 2000 — 20z = 0 (3-53)

The block diagram of the computer setup using the abbreviated notation normally
used for a REAC computer is shown in Fig. 3-4a. Figure 3-4b shows the identical
circuit when drawn in the more detailed form required for the GEDA. In Fig.
3=4a, potentiometers 1 and 2 are set to unity for the stated values of the parameters,
They were included in the diagram so that the system response could be investi-
gated for several values of the coefficients of the z and # terms in Eqs. (3-41) and
(3-42).

The choice of constant by which to multiply Eqs. (3-46) and (3-47) was made by
considering the highest-order derivative that occurs explicitly in the problem setup
of each equation. In the circuit diagram of Figs. 3-4a and 3-4b, it was assumed
that the second derivatives were not needed as recorded quantities. Therefore,
it was not necessary to consider their maximum wvalues, as they do not appear
explicitly at any point in the diagram.

If it is necessary to record d*r/dr? and d%/dr2, each must be formed explicitly in
the computer setup and the magnitude of each must be considered when choosing
the appropriate equation multiplier constants. From a knowledge of the problem
frequencies and the maximum magnitude of £ and @ it can easily be determined that

~72 < 5% < 72in./sec (3-54)
-T2 < ::—:g < 72 radians /sec (3-55)

A satisfactory constant by which to multiply both Eqgs. (3-46) and (3-47) is thus
0.04. Performing this multiplication gives the new equations

I
%T’:+4u:-u-u (3-56)
$+¢m—4:-n (3-57)

The setup of Eqs. (3-56) and (3-57) is shown in the circuit diagram of Fig. 3-5.

A comparison of Figs. 3-4a and 3-5 reveals that two more amplifiers are neces-
sary in the latter eircuit. These two amplifiers are used to generate the highest-
order derivatives of the problem. This adequately demonstrates the undesir-
ability of generating explicitly the highest-order derivatives of a problem unless it
Is necessary from the statement of the problem. To do so without good reason is
waatelul of equipment and effort.
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Intial condition = 20x00) = 40 volts

=20 |,0 gk \ .
I dr 4 3 + 20x 1 8 x

@ +208 1 s /

- 208

_ 10 .-5£ \ \
- +208 =204

3 L P B 1 9

+2'Elrl s /

fa)

Initial condition = 20x(0)

—{—

olx
I 0.25

e

dd
-§53; 025 +208 . -208

()
Fio. 3-4. Cirenit diagrams of the computer setup of the tuned torsional pendulum.
fa) The notation found most convenient for computers having fixed input and feed-
back impedances; (b) the detailed representation required wheq using computers
having external plug-in impedances. Impedance values are in megohms and
microfarads,

In Fig. 3-4a each line on the circuit diagram represents a patch cord
on the computer showing the proper component interconnections. As
the problem complexity increases, the interconnections become more
and more difficult to trace out using this notation. To reduce this

difficulty, a more convenient notation has been adopted.
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The new notation consists of indicating each potentiometer twice,
at both the input and the output of the amplifiers to which it is con-
nected. Long interconnecting leads between amplifiers are indicated

Initial condition = =16x = — 32 voits

Fia, 3-5. The computer setup of the tuned torsional pendulum. The second
derivatives of the problem variables have been formed, requiring the use of two
extra amplifiers in the cireuit.

Initial condition =200} = 40 volts

-5 I\
dr . 4 + 208 Il/g - 208 1410

Fia. 3-6. An equivalent notation for the tuned-torsional-pendulum problem circuit
dingram given in Fig. 3-4a. Long interconnecting lines are eliminated from the
eircuit dingram to allow easier preparation and interpretation of the diagram.

nt inputs by the number of the amplifier to which the output is con-
nected and at outputs by both the amplifier number and the gain to
which the input is connected. Using this notation, the cireuit dia-
gram of Fig. 3-4a may be redrawn as in Fig. 3-6. The new diagram
in simpler to draw and much easier to use. The advantage is small
for small problems but is very great for large setups. A similar sim-
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plification can be made when drawing circuit diagrams for computers
such as the GEDA. In this case long interconnecting wires are not
shown on the diagram, and each end is terminated by identically num-
bered circles or triangles to identify the proper connections.

After discussing the process of performing a time-scale change on a
gystem of equations, it is now possible to complete the automobile-
suspension-system problem begun in Example 3-2, Sec. 3-4.

Example 3-6. Rewriting the equations of motion of the system (see Example
3-2) and inserting the known parameters, the equations become

dir dx dr
EEF'+C|E'+I.W1}:. -EIE‘+1.ﬂm=, (3-58)
d
20+ €0+ 5,505 = 1,000z, + 45005 + (5 (350)

Tz = z(f) = 0.2 0.00 < < 0.01
=00 001 <¢ < 1.01
=02 101 <i < 1.02
=00 1.02<it<202 (3-60)

L]

In Example 3-2 it was indicated that a time-scale-factor change should be made.
It was also indicated there that a logical change would be to elow the problem solu-
tion by a factor of 10, This can be accomplished by making the substitution
{ =+/10 in Eqs. (3-58) to (3-80). The equations obtained after making this
substitution are

idr dx dr
2,500 _.:ar-' + 10, —df' + 1,000z, = 100, —n,r' + 1,000z, (3-61)
i dr
200 27 + 100, 22 + 5,002, = 1,000z, + 4,500z, + 10, ‘%‘ (3-62)

n-:(ﬁ) =02 00<r< 0.1

=00 01 <r<]I101
=02 101 <r <102 (3-63)
=00 102 <r < 202

In any problem, s tabulation of the estimated range of variation of the variables
is an essential step in the satisfactory setup of the problem. Buch estimates for
this problem are

ry = 0.16 ft (3-04)
23 = 0.16 It (3-65)
951 o 016w, = (0.16)(0.63) = 0.1 ft/machine soo (3-66)
L4 % 0.16un.0, = (0.16)(5.24) = 0.84 ft/machine see (3-67)
2y = 021t (3-08)

TIME- AND AMPLITUDE-S8CALE FACTORS 39

These estimates were made by setting all derivatives equal to zero in Eqs. (3-61)
and (3-62) and considering only the simplified equations

5,500z, = 4,500z, (3-69)
1,000z, = 1,000z, (3-T0)

Approximations obtained in this manner are admittedly very crude. They often
prove to be extremely useful, but it must be kept in mind that they may be off
considerably. For that reason, it is usually desirable to choose seale factors Eiving
maximum estimated voltages approximately one-half the allowable voltages, By
this choice, errors as large as a factor of 2 may be tolerated in the initial approxima-
tion with little effect on the quality of the problem setup.

From the above approximations, it is seen that Eq. (3-61) can be multiplied by
a factor of 0.2 and Eq. (3-62) can be multiplied by 0.4, giving the final equations
from which the circuit diagram can easily be prepared:

d®, d
500 5 +20, ! + 2002, = 20, %2 4 2002, (3-71)
d'z .
dfl’ o dc.f + 2,200z, = 400z, + 1,800z, + 40, {:T:: (3-72)

450z, = 90 0.0 <+ < 0.1
= 0 01 <+ < 10.1
=00 101 <+ <102 (3-73)
= 0 10.2 <r < 20.2

* ® *

£l = *

The method of generating the forcing function 450z, as shown in the lower por-
tion of Fig. 3-7, utilizes techniques that have not been discussed as yvet. The cir-
cuit is included here only for the sake of completeness, and it is not intended that
the reader attempt to fully understand its operation at this time. For the present,
let it suffice to say the circuit will operate satisfactorily by periodically switching
) volts into integrator 3 as the voltage applied to differential relay 2 (DR 2)
reaches —a volts. Differential relay 1 (DR 1) then switches the 90 volis off again
as 10 cos 0.317r becomes greater than +a. The voltage a is adjusted as required
so that the relays both remain closed for 0.1 see. The necessary periodicity is
achieved by feeding 10 cos 0.317r to the differential relays so that they produce a
pulse once each 10.1 sec. A more complete discussion of the differential relays
and their operation is given in a later chapter.

The graphical results of the runs made for values of ', = 0 and € = 100 are
included in Fig. 3-8a and b respectively. Examination of these resulis reveals
that the predicted values of z,(f) and =,(f) obtained from Eqs. (3-60) and (3-70)
are very conservative. This is true because the applied foreing funetion is of
very short duration in comparison to the time constants of the system. Had this
fact been considered, considerably better approximations eould have been made.
The important thing to note here is that, even with the very rough approximations
used, the computer setup obtained on the first trial was usable.

In tt&u setup of linear problems, the choice of scale factor is perhaps
not so important as in the setup of nonlinear systems. It is possible
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@ = 2Cdx, /dy
@ - 200x,
3 +U-Efjd'-t§fd'r
8 + 200x3

@ =04C,dxs (dr
@ =220x, 10 dr, I\
+ -804~ -320x
@ 400r, 1 3 dr 3 +320x; 11 z@
O +4Cdxy [dr h 5 4 V
o 5 t4500 |,
+ ED'“—" Recorder 3

Pot Setting

+1 DR 1 A
@* K
+100 <100
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-a | DR2 Jud
ok Recorder 1
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Fia. 3-T. Cireuit diagram for the computer solution of the automobile-suspension-
system problem described in Example 3-2. The portion of the circuit diagram
given below the dashed line is used to generate the forcing function needed in the
problem. It is not intended that the reader fully understand that portion of the

eirenit at this time.

to change the magnitude of the initial conditions and the forcing fune-
tions applied to linear system of equations, and the output of all
amplifiers in the system will be changed proportionately. The situ-
ation is not the same in the case of nonlinear problems. The scale
factor cannot be varied at will by simply changing the initial conditions
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Fra. 3-8. The graphical results obtained from the computer solution of the automo-
bile-suspension-system problem (a) for €y = 0, (b) for €', = 100 Ib-sec /ft.
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or forcing function of the problem! It is, therefore, highly recom-
mended that the newcomer to the field of analog computation assign
a fixed scale factor of 1 volt = 1 unit, or any other scheme which is
consistent with the scale factor used in multiplication, and retain the
same scale factor throughout all problems, linear or nonlinear. Any
changes in scale factor can then be made by multiplying the equations
individually by appropriate constants. Adherence to this procedure
will save the neophyte from many embarrassing moments upon first
attempting to perform the solution of nonlinear equations on analog
computers.

3-8, Summary. The choice of time base and scale factor in a prob-
lem is truly the key to satisfactory computer operation. Any expendi-
ture of time in analysis of a problem prior to attempting the setup
will usually pay large dividends in total time saved.

The methods of analysis used in the preliminary study of problems
may be very inexact but may still reveal considerable information as
to the nature of the solution. In the case of highly nonlinear systems,
simple analysis is not always possible. In those cases, the problem
preparation should proceed on a trial basis. If the computer setup is
not satisfactory, it can then be modified to allow satisfactory computer
operation.

As an aid toward the snecessful solution of problems, all work should
be carried out systematically. All steps in the problem preparation
should be tabulated for later use in checking. The tabulation of the
gteps taken in the problem preparation should include the following
1tems:

1. Problem title.

2. Brief description of the problem, including any diagrams neces-
gary to the understanding of it.

3. The system equations.

4. A check solution, if known.

5. The range of the problem variables, if known; if unknown, esti-

mated values with an indication of how they were obtained.

6. The range over which the parameters of the problem are to be
varied.

7. The time-scale change to be made.

8. The new equations after performing the time-scale change.

9. The final equations adjusted for scale to prevent overloading of
amplifiers,

10. The problem cireuit diagram.

11. A tabulation of potentiometer settings.

12. A tabulation of the runs made in the course of the investigation,
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PROBLEMS
3-1. Determine the time constant of the solution of the equation

dx
IIEIE‘-—+L5: = 10

How many seconds are required for the results to approach to within 2 per cent
of the steady-state value?

For each of the Probs. 3-2 to 3-4, determine (a) the undamped natural frequency,
{(b) the damping ratio, (c¢) the actual frequency of oscillation.

dz dx
3-1. ﬁm?-l'ﬁﬁ-l'm:l:-lﬂ
dy dy -

where dy/di(0) = 0 and y(0) = 1.

dy . 49y -
3-4. o HA45 +05y =1

8-6. Determine the undamped natural frequency of the equation
dy dy dy -
adl’+15d¢‘+md£+m 10

8-6. Apply Routh's criterion (see Sec. A-4) to the equation of Prob. 3-5 to
determine whether its solution is stable or unstable.

8-T. Make the necessary substitution of variables in the following equations to
slow the solutions by a factor of 10:

d
a. 00152 + 0029 4y =10
b, 597 + 100y = 100 sin z
o T+ (@a—beos2r)y =0
d
d. ot =P 4y =0

3-8. Determine the approximate frequency and time econstant present in the
system of equations

d3zy

der

dxry

et
20 % + by = by

Determine the exact exponential time constant and frequency components present

in the system solution. Hist: Determine the characteristic equation and factor

it into real and quadratic factors. A quadratic factor can be expressed in the form

P+ Zoep + oat

+ 4 == + 10z, = bx; + 10
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Ans. Approximate values: r = 4 gee, w, = 3.17 radiana/sec. Exact valuea:
r = 8.4 sec, wy = 3.24 radians/sec, w = 2.42 radians/sec.

3-9. Determine the approximate maximum magnitudes of the dependent vari-
able and its derivatives in each of the following equations:

d
a. :T?-I-ﬂﬁynﬂ ¥ =10 200 =0
dly | 5y
b. 100 21 4 558 + 0.5y = 10
dty | . dy e
(3 ‘mdtl+7dt + 6y = G &in 2

8-10. The determination of the exact maximum amplitudes of the variables of a
problem can frequently be quite laborious, but rough approximations are often
easily made. Determine the approximate range of the variables in the system of
equations

d d
md—l;';' + 5%‘ + 2y, = 0.2y,

diys  d
b +f+nu. = 10y,
yi = 101 — &)

3-11. Prepare a circuit diagram for the computer solution of the system of equa-
tions stated in Prob. 3-10. In the computer diagram adjust the amplitude scale
so that the maximum expected magnitude of the variable or derivative appearing
at the output of any amplifier will lie in the range 15 to 100 volts.

3-12. A time-scale change { = r/4 has been made in the solution of a problem.
A recorder is used to record the output of an amplifier having 25 dy /dr as its out-
put. The recorder is calibrated so that full-scale deflection is obtained when

30 volte is applied to the input of the recorder. What is the proper full-scale

labeling of the recorded quantity? (Assume 1 volt = 1 problem unit in the
computer solution.)
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CHAPTER 4

THE SYNTHESIS OF SERVOMECHANISM SYSTEMS

4-1. Introduction. One of the most fruitful applications of analog
computers has been the analysis of servomechanism systems. Experi-
ence has shown that the computing elements lend themselves very
naturally to simulation of closed- or open-loop control systems. The
proper application of a computer can save many hours of ealeulation
in determining the proper range of coefficients to produce stability or
an optimum response to a disturbing influence in a servomechanism
system.

When applying the classical methods of synthesis of servomechanism
systems, one determines the frequency response of the system. To
determine the actual time response of the system is possible, but it
entails a very considerable amount of caleulation in translating the
results from the frequency domain to the time domain. In engineer-
ing applications, the end result desired in evaluating any servomecha-
nism system is the time response of the system, Fortunately, this is
the result obtained from the analog computer. Furthermore, the
graphical nature of the display of analog computer results is an advan-
tage rather than a disadvantage to the engineer.

It is not the author’s intention to imply herein that an analog
computer can in any way reduce the requirements of knowledge of
servomechanism-synthesis techniques for the designer. Truly, the
computer can save endless hours of ealeulation, but it can tell nothing
a8 to the nature of a network that must be added to a particular sys-
tem in order to permit a stable configuration. At present, only the
classical approach to servomechanism synthesis and design can give
this information.

It is beyond the scope of this book to enter into an exhaustive treat-
ment of servomechanisms.  Only the peculiarities of systems that will
aid the reader successfully to set up similar systems on an analog com-
puter will be mentioned.

4-2. The Block-diagram Notation. A very convenient method of
representing complex physical systems is by means of block diagrams.

45
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Using this notation, very complex systems can be represented as groups
of properly interconnected blocks where each block represents a small
portion of the system. If the complex system is broken down into a
sufficiently large number of components, the behavior of each com-
ponent can be represented mathematically by a simple equation.
Each block of a block diagram has three characteristics: an input,
an output, and a transfer function ¥ (p) where ¥ (p) is an operator that
relates the behavior of the out-
put and input. In Fig. 4-1a the

X

+ characteristics of a block are
86— Yilp) —06 y—23 8  illustrated. The equation relat-
* ing the input and output is
: 6
(a) (b} ﬂ_: = Yi(p)

Fi1a. 4-1. Block-diagram notation: (a) a
block having a transfer function ¥.(p); Although a block can have

b a differential symbol indicating the ais_ s

E.liﬂbmic ldﬁitinn?i several qmmt.i%iu. E;;Imﬂ“;: E:t:::lz;:gld;
the study of servomechanisms to represent the sum (or difference) of
several quantities. This symbol is called a differential and isillustrated
in Fig. 4-1b. The signs associated with each input of the differential
indicate whether the quantity is to be summed in the positive or nega-

tive sense, Thus

Eu- =& = L‘ + 4
The block diagrams used to represent servomechanism systems nor-
mally have only a single input to each block. When several quanti-
ties are to be combined, a differential symbol is used.

- iy =constant

Amplifier
o — R-:

F1a. 42. A simple controller consisting of an amplifier, a d-¢ shunt-controlled

motor, and & load. The combined inertia and damping coefficients of the motor
and load are J and F, respectively.

To illustrate the usefulness of block diagrams, consider the simple
system illustrated in Fig. 4-2. The system consists of a d-¢ shunt-
controlled motor, a load, and an amplifier that supplies a voltage
proportional to an input signal e to the field winding of the motor.
For simplicity, the inertia and viscous damping of the load member
and motor have been combined into the single constants J and F
respectively. The torque output of the motor is T
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To facilitate writing the equations of the system it can be subdivided
into smaller parts as illustrated in Fig. 4-3a. The equivalent block
diagram of the system is shown in Fig. 4-3b.

i [] '
: : i =constant
Amplifier [ T 1 R % ' Ty
E— K ':.I : Ry Ly i 1 : JF J&
[
I : 1
la) | " '
[ i I
| i :
I i -
! 'll"[ = ; -
Y €, 2;‘| iy Il T : Yalpl
t—» I,ip)-K, T = Yilpl=-K, ; 1 i
[ Ry + Ly ! i pip+ Fy
! 1 ]
ib) ! i i
£] K,
¢ = ™ W+ Loipidp+ B &
el

Fia. 4-3. Block diagram representation of the simple controller shown in Fig. 4-2.
The dotted lines in (a) indicate that portion of the cireuit represented in the corre-
sponding block of (b). In (¢) the latter three blocks of (b) have been lumped into
a single transfer function.

The relation between the voltage produced by the amplifier ¢, and
the input signal of the amplifier « is
o= K, (4-1a)

[
The ratio of the field current i; and the amplifier voltage is

i 1

e Ry + Ly (#-18)

where Ry and Ly are the resistance and inductance, respectively, of the
motor field winding. The torque T produced by the motor is

T

Fp = K, (4-1¢)
where K is & constant determined by the characteristics of the motor.
The equation giving shaft position 8, can be written directly by the
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application of Newton's laws
(Jp* + Fp)b, = T

8 1
L 4-
or T = p0p ¥ F) (4-1d)
Equations (4-1b) to (4-1d) can be combined by successive substi-
tution to form a single transfer function relating the shaft position
and amplifier voltage. Performing this substitution gives

E&l . K‘.I N
o~ B FLppip FF) (4-2)

It should be noted by the reader that the new transfer function,
Eq. (4-2), eould have been more simply obtained by multiplying the
transfer functions of the component parts that were combined:

* = Vi) Va(p)Yo(p) (4-3)

The block diagram of the system as expressed in Eq. (4-2) is shown in
Fig. 4-3c. The representation of the system can, of course, be reduced

+ " ] K
L Ky > (f;+ Lp)pF+ ofp) 6.

—

Fra. 44, Bimple positional servomechanism formed by the addition of a feedback
loop to the controller of Fig. 4-2.
to a single block by multiplying the transfer funetion of the two remain-
ing blocks to obtain the expression

b _ KK+

e (B;+ LiplplJp + F)

The system of Fig. 4-2 can be converted into a simple closed-loop
positional servomechanism by the addition of an error-detecting device
to determine the error between a desired shaft position 6 and the
actual position 8,. If this error is denoted by ¢, then the servomecha-
nism can be represented as shown in Fig. 4-4.

It is beyond the scope of this book to treat the writing of equations
of physical system extensively. The purpose of this section has been
merely to indicate the useful purpose that block diagrams can serve,
The reader who desires more detailed information regarding the block-
diagram representation of physical systems (mechanieal, electrical, and
hydraulic) should refer to texts discussing servomechanisms and allied

topies.'—®
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4-3. Setup of a Simple Servomechanism System. The most com-
mon method of representation of a servomechanism system is by block
diagrams. A typical example of this notation is shown in Fig. 4-5.
In the figure,

e=& — 4, (4-4a)
e = Ke (4-4b)
ey = g — Eapﬂp {Hﬂ}
N

Pt ap? (4-4d)

When starting the setup of a servomechanism system for an analog
t*um;[?ut.ﬂr, tl:!e natural tendency for the beginner is to expand the sys-
tem into a single transfer function. This in general is improper and
usually further complicates the system setup. Close examination of

+
a8, F@ﬁb K,

b,

+

P Hap 0

Kap  (w—np

Fia. 4-5. Block-diagram r[-pnmntﬂti;ﬁ of & 3[":";_&”“ hani _ )
tion feedback and also rate feedback from a t.a.ch]:;nmter_ mechanism having posi-

el

the system block diagram reveals a considerable similarity to an actual
computer setup diagram. Advantage can be taken of this similarity
by considering each block separately.

Thn? transfer function of each block can be expanded into differential-
equation t:urm, with the input serving only as the forcing function of
the e-guatmn. After completing the setup of the individual transfer
functions distributed throughout the system, the complete setup of the
system can be obtained by the interconnection of the individual setups
in rthe manner indicated by the block diagram of the servo gystem.

) Ihe procedure is illustrated by the setup of the servo system of
Fig. 4-5. Figure 4-6a illustrates the formation of the error signal — ¢
h:"'. the addition of & and —#0,; Fig. 4-6b shows the generation of —e,
8, is formed by expanding Eq. (4-4d), giving |

P8, + aph, = K e, (4-5)

The setup of this equation is shown in Fig. 4-Ge.
Th_m tarm Kapb, (Fig. 4-65) can be obtained by differentiating 6, and
multiplying by a constant K,. As has been mentioned previously,
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K,
) 1 ("1
-6, 1 B L -
la) ()
Kz

(e}
F1a. 4-6. The steps in the preparation of the eircuit diagram for the computer solu-
tion of the servomechanism shown in Fig. 4-5. The circuit representing each por-
tion of the system can be prepared separately, and later the circuit can be com-
bined into a single setup. The steps are the formation of (a) —e, (b) —es, () 0.

g

+ 8, / K |

L]
Fia. 4-7. SBetup of the system of Fig. 4-5. (a) Preliminary setup; (b) reduced setup
after the unnecessary circuit components have been eliminated.

_h_ﬁ_\ (—==ek
g +¢ .r"I"\ K K« .

this is undesirable, as differentiation 18 a noise-amplifying process.
Instead, if it is observed that —p#é, is already available, it is necessary
only to multiply this quantity by the constant K, to obtain K,pé,, the
quantity needed in the formation of es. Finally, by interconnecting
the various portions of the system and adjusting signs, the complete
computer diagram of Fig. 4-Ta is obtained.
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At this point it is usually desirable to reexamine the eireuit diagram
to determine whether an excessive amount of equipment has been used.
In the diagram of Fig. 4-7a, the amplifier forming — 6, and the ampli-
fier forming —e ean be eliminated by summing 4+ K,6, and — K,#; on
the input of the amplifier forming es. In this particular case, how-
ever, this will not be done, as the error ¢ is a quantity which is usually
desirable to record. If the simplification were to be made, ¢ would
no longer be generated explicitly at any point in the diagram. One
simplification can be made, however, as e; is not a quantity that is
of particular interest. Amplifier 9 can, therefore, be completely elimi-
nated from the circuit, and this eliminates the need for amplifiers 10
and 11 providing that —#; is available rather than 8. The final dia-
gram of the eireuit is shown in Fig. 4-7b.

If it is necessary to examine the behavior of the system for many
different values of K,, K, and K;, then it may be more convenient
to use the diagram shown in Fig. 4-Ta. In this diagram each potenti-
ometer setting is a function of only one of the arbitrary constants.
[n the reduced setup, the settings of potentiometers 1 and 2 are each
a function of two of the constants of the system. Similarly, to change
K3 in Fig. 4-7b it is necessary to set two potentiometers rather than one.

As a second illustration of the setup of a servomechanism system,
consider the simple positional servomechanism system shown in Tig,
4-4. Two alternatives present themselves in the preparation of the
circuit diagram: the denominator of the second block can be expanded
to form a polynomial in p, or the function can be formed by parts,
Here, for illustrative purposes, the cireuit will be formed by parts.
The transfer function of the second block

[ K

er (Ry+ Lip)p(Jp + F)

can be rewritten as

b _ K. L
5_1 F1|:P}Fl[:F] R,r + L.FP pl:J'P + F)

or, inserting & dummy variable es,

f, 1
ex plJp+F)
e K
L] iy -I"L;p

The circuit diagram of the system is shown in Fig. 4-8. The nota-
tion used is that most suited to the Goodyear GEDA or other com-
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puters utilizing external plug-in resistors, In the circuit diagram, the
values of the resistors and capacitors are given in literal form in meg-
ohms and microfarads, respectively.

Fra. 4-8. Circuit diagram for the computer simulation of the se_,rvmm:nhu.n_ium pf
Fig. 4-4. The values of resistors and capacitors needed in the eircuit are given in
megohms and microfarada,

4-4. Setup of a Transfer Function. Occasionally the engineer will
be confronted by a transfer function representing a system, or portion
of a system, which does not give a desirable computer setup when the
setup is made in the conventional manner. Such a class of transfer
functions are those expressions involving a polynomial in p, divided
by a polynomial in p, such as

.  ap*+bp+e 45
b " p +dp'+ep 7 (4-6)

A conventional approach to the setup of this problem will first be
ased. Only in this manner can the difficulties involved be pointed out.

As a first step, expand the equation into differential equation form,

giving
p*6, + dp*6, + epb, + 9, = ap®0; 4 bpb; + b, (4-T)

Since the first and second derivatives of 6 are needed in setting up
this equation, the equation can be divided by p® to ﬁlin";i:mte the
necessity of differentiating 6, twice on the computer. (This may be
done only if all initial conditions are zero.) The result of this oper-
atlon gives

[ [ i f;
— — = +b=4¢ 4-8
pﬂ.+dﬂn+ep+fp, afl, p F (4-8)

—da i
O -/8,/p?

: +oll; I,rp?

THE SYNTHESIS OF SERVOMECHANISM BYBSTEMS %

Now, only integrations are necessary, and Eq. (4-8) can be used to
derive the circuit diagram of Fig. 4-9. At this point it seems that no
difficulties have been encountered. Tt is not until a particular foreing
function has been chosen and the problem is placed upon the computer
that difficulties arise. If 4, is & sinusoidal foreing function, all will be
well.  If, however, it iz decided to excite the system with a step input
(a ramp-type input would be worse), the troubles begin. Assume

~eba/p

— mma

+0,/o -6,/ p?

+agf
+&8,/p

- = =

=&./p

+8,/p 9

« Fra. 4-8. Cireuit disgram for the computer solution of FHq. (4-6). In the diagram

the forcing function #, is integrated twice. This is & common souree of trouble.

j: 6, dt = (4-9)

¢ [ 1
and f f f; dt* = 5 (4-10)

This simply means that sooner or later amplifiers 4 and 5 in the dia-
gram of Fig. 4-9 must overload, Reducing the input voltage and
attenuating the output of integrator 4 before integrating the second
time will only prolong the time before overloading of the amplifiers
OCCUTs,

A far better approach to this problem, and incidentally one which
uses less computing equipment, is given below, Agnin, using the same

f; = 1 for 0 < {; then
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equation as an example,

ﬂ¢ ﬂp='+'hp +'ﬂ
= = 4-11
& p+dpPt+ep+f (4-11)
One ecan proceed by dividing both the numerator and the denomi-
nator by the highest power of p in the numerator, namely, p?, giving
d, a+b/p+c/p?
huk 4-12
6 p+d+e/p+f/p (#-12)
Solving this equation for the highest derivative and grouping the terms

-bh
1

= le8;= 0,1+ 3 1b8;=ed,)

1
o (8, =f0)+

lp ib#, = ed,)

-d#,
O ie0,~ 18,

L b8~ b lE

8 O all;

=, II,-E-.,' -fa,
= ch,

N
£

Fi1c. 4-10. An improved eireuit diagram for the computer solution of Eq. (4-6). (a)
Partial system setup; (b) complete setup.

according to powers of p gives
0. = at — do, + (0 — e8) 3 + (b — f0) 35 (+13)
It is important to note that

(b, — eb, j—ﬁ + (o —_fﬂ,}%, - (p) (4-14)

can be formed as in Fig. 4-10a. Figure 4-10b gives the complete cir-
cuit diagram of Eq. (4-13).

Careful examination of this circuit diagram reveals that 8; and 8
always appear at the input of integrators in pairs, and with opposite
gign. With a step input, providing the system is stable, there will
no amplifier whose output will increase without bound. It is

1gl

L
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apparent that fewer amplifiers are needed in the setup than in the
setup of Fig. 4-9.

In the foregoing discussion, the assumption was made that the initial
conditions in the system were all zero. When initial conditions are
present, they must be accounted for by methods of the Laplace trans-
form. The above technique of computer setup may still be used, as is
shown by the following example.

Consider the system

Z, _ ap—+b

n pteptd (4-13)
If initial conditions are present, the system equation can be expressed
in Laplace-transform notation as

(5" + o8 + )X.(8) — 82,00) — 52 (0) — e, (0) = (as + )Xo

(4-16)
s+ b S(0) + dz,/di{0 L(0
or  Xos) = o Xi(o) + =0 . +fﬁ‘:+3':” ) (4-17)

The setup of the first term on the right side of Eq. (4-17) proceeds
identically with the procedure outlined previously. The second term
is considered separately and the results of the two circuits summed to
form z,.

With some forcing functions, the setup may be reduced to a single
setup* as illustrated below for a unit-step input. If the numerator
and denominator of the second term on the right side of Eq. (4-17)
are multiplied by s, the expression becomes

_ _as+b _ #*1,(0) + [dr./di(0) + cx.(0)]s 1
Xo(s) 8' 4+ es + cix'[s} t 8 +cs+ d r (4-18)
Recalling that the Laplace transform of a unit step is 1/s, then since
Xis) =+ (4-19)
Eq. (4-19) can be rewritten as
_ 8°5,(0) + [a + dr,/dt(0) 4 ex.(0)]s + b 1
Xo(s) T totd s (420)

Following the procedure outlined for Eqgs. (4-11) to (4-13) above,
Eq. (4-20) can be rewritten as

sXo(8) = 2,(0) — eXo(s) + [a + % (0) + ex,(0) — dI..(a]] %+ %
(4-20a)

The circuit diagram for Eq. (4-20a) is shown in Fig. 4-11.
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*
+100— j :'_‘“J:'JI::Ii
C =X,

= La *x,

L] dlx, 1
o7+ la+ (0] +ex, 01~ d, | 5

+ilx,
O
+h -
+100-{4) 2 bip 1
=la+ ::" [0 +ex,100]
!
=100

Fi1G. 4-11. The computer setup demonstrating the method of including initial con-
ditions in the setup of a transfer function.

4-5. Setup of the Factored Form of a Transfer Function. Still
another form of presentation of transfer functions is the factored form
such as

z, _ K(p +a)(p +b)
7= 2+ +d) (4-21)

It is sometimes useful to set up this type of equation by using more
complex input and feedback networks than are used to make up simple
adders or integrators. This specific example will not be set up here,
but a few forms of transfer functions which are sometimes useful will
be developed.

Recalling that the ratio of the output voltage to the input voltage
of a high-gain d-c amplifier is the negative of the ratio of the feedback
impedance to the input impedance, one may proceed to develop the
transfer function for any combination of input and feedback imped-
ances desired.

Cmne of the simplest and most frequently used complex feedbacks is
shown in Fig. 4-12. The feedback and input impedances are

- R,;’pfj’i
7 Re + 1/pC, (4-22)
%= R (4-23)
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Theref & _ _ R 1
ercfore o Rorp £ 1 (4-24)

where r= ('R (4-25)

The above transfer funetion is in a form readily used on machines
such as the GEDA where all impedances are patched externally. It is
not, however, ideally suited to use on machines of the REAC type,
where decade resistance elements are usually not available. A parallel
form of the above transfer function can be developed using potenti-
ometers, fixed resistors, and capacitors that will, in general, be more

Ry
A VATAY e

1
i —(O—
|
|

i

Fia. 4-12. A high-gain d-c amplifier hav-  Fra. 4-13. REAC circuit having a trans-
ng & resistive mput and a parallel re-  fer function of the same form as the eir-
sistor and capacitor in the feedback cuit of Fig. 4-12,

path.

useful for machines provided with fixed internal resistors and con-
densers (Fig. 4-13). A comparison of the circuit of Fig. 4-13 with
the cirenit of Fig. 4-12 shows that the former differs from the latter
only in that the condenser and resistors have been given fixed values
of 1 uf and 1 megohm, respectively, and a potentiometer has been
inserted in series with the fixed resistor in the feedback. To derive
the transfer function in this form, it is necessary to write the equation
represented by the circuit. In operator form this is

After simplification this becomes
€o T
e T+ 1 (4-27)

It is apparent that the results obtained by either the circuit of Fig,
4-12 or that of Fig. 4-13 are similar, since the equations representing
the circuits differ only by a constant.
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A second example using a complex feedback and input impedance is
the circuit of Fig. 4-14. In this circuit the transfer function is

g _ﬂﬂ_ﬁ?’;p-{-lEl _ Rimp+ 1

& Ry RiCap + 1 Rirp + 1 (4-23)
where n = k., (4-29)
and 72 = Ral's (4-30)

The analogous circuit in a form more readily usable for a REAC is
shown in Fig. 4-15. Writing the equation from the diagram gives

1 e; l e,

£y = = — —— — (4-31)
TP T P
F.? _ 1'_'11'1?] =+ 1
Therefore 0 T F1 (4-32)

There are a very large number of transfer functions that can be gen-
erated by using complex input and feedback impedance networks. A

("]
=
2=

Cy e

- —— o

[
i H]_ e |

|

Fi6. 4-14. One-amplifier circuit having Fia. 415. REAC circuit having a
a transfer function of the form —Ra/f transfer function —ry/milirp + 1)/
Ri[(rip + 1)/ (rep + 1)) (rap + 1)].

few of the possible combinations are shown in Table 4-1. A similar
list was first published by The RAND Corporation® in 1950. The cir-
cuits shown in the table are all represented by RC networks, and it is
left to the reader to translate these circuits into other forms if it is
made necessary by the characteristics of the computer on which they
are to be used.

Previously it has been emphasized that differentiation is a very
undesirable operation to perform on an analog computer. The cir-
cuits shown in Table 4-1 frequently combine the operations of differ-
entiation and integration together in the same transfer function. In
general, the differentiation performed in these circuits will cause no
difficulty, as there is usually a condenser feedback path that will offer
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TasLE 4-1. Oxng-amrrarier Circurrs ¥or THE GENERATION OF CoMPLEX
Traxsrer Fuxcrions
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TanrLe 4-1. Ong-ampLiFiER Circurts For THE GENERaTION oF COMPLEX
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TaBLE 4-1. Oxg-AMrLIFIER CIRCUITS FOR THE GENERATION oF COMPLEX
Transrer Funerions (Continued)
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u low impedance to the high-frequency components of the noise arising

from the differentiation.

In particular, this is true of all those circuits

generating transfer funetions with the power of p in the denominator
equal to or greater than the power of p in the numerator. For those
circuits of the table representing transfer function having a larger
power of p in the numerator—circuits 4, 5, 10, 14, and 15—there is
The operation of these circuits
should normally be checked carefully in the particular application
where they are to be used before relying too heavily upon their satis-

some possibility of noise trouble,

factory operation,

Tn this section circuits have been demonstrated that provide for the
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generation of several simple transfer functions using passive networks
in conjunction with a high-gain d-¢ amplifier. No effort was made
here to describe techniques by which any arbitrary transfer funection
can be synthesized using a single amplifier.

Mathews and Seifert* of the Dynamic Analysis and Control Labo-
ratory, Massachusetts Institute of Technology, have deseribed sys-
tematie procedures by which this can be done. They have presented
a one-amplifier design and a three-amplifier design by which theoreti-
cally any linear transfer function can be synthesized. Both methods
require of the reader a knowledge of network synthesis techniques.

The three-amplifier design has the advantage of simpler synthesis
caleulations, and in general the network configuration is more easily
satisfied by practical sizes of physical components. Both the one-
amplifier and three-amplifier methods can entail considerable labor in
realizing satisfactory network designs. For that reason the author
considers the method previously described in this chapter to be the
most useful for normal applications.

Oceasionally situations can arise in which the methods of Mathews
and Seifert are invaluable. Such occasions might be ones in which
(1) the size and complexity of the computer setup require that all
possible simplifications be made to permit the problem to be solved
on the existing computer facility; or (2) the transfer function iz a por-
tion of a simulation problem in which portions of the system are repre-
sented mathematically and portions are represented by the actual
hardware comprising the physical system. In the latter case it is
possible that the frequency response of the mathematical transfer

function is such that the simulation on the computer is difficult.

Since physical hardware is involved, a time-scale change cannot be
made and the one- or three-amplifier setup may provide improved
computer operation.

Since the method is slightly restricted in usefulness, it will not be
deseribed here. The interested reader is referred to the paper pre-
sented by Mathews and Seifert for further details.

4-8. Summary. In this chapter the author has attempted to intro-
duce the reader to the methods of setup of various forms of represen-
tation of servomechanism systems. No effort has been made here to

* M. V. Mathews and W. W. Beifert, Transfer-function 8ynthesis with Computer
Amplifiers and Passive Networks, a paper presented at the Western Computer
Conference and Exhibit, sponsored jointly by the American Institute of Electrical
Engineers, the Institute of Radio Engineers, and the Association for Computing
Machinery, Los Angelea, Calif., Mar. 1, 2, 3, 1955.
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show the representation of servomechanism systems containing non-
linearities. The reader will find Chap. 7 very useful in preparing
the computer setup of servomechanism systems containing nonlinear
phenomena,

In 1851 Beck,* of the Naval Air Experiment Station, presented a
paper at Cyclone Symposium I discussing the computer setup of trans-
fer functions. In this paper Beck demonstrated the possibility of com-
bining the setup of a transfer function, with initial conditions, into a
single computer setup. This technique has been used here in Sec. 4-4,
The general method of representation of transfer functions used by
Beck is somewhat similar to the method used here; however, Beck
reduced the setup of transfer functions to a mechanieal rather than a
logic process. It is the author’s opinion that mechanical procedures
of problem setup are not fully satisfactory, as they are soon forgotten
unless they are used often.

PROBLEMS

4-1. Figure P 4-1 represents a servomechanism having a split-field servomotor,
a load with viscous damping, and tachometric feedback. (a) Write the equations
representing the servomechanism; (b) reduce the system of equations to a single
transfer function.

e 25 Aiy T. 1
"'_4?@_' & D04p+ 1 = K=l = s T 0
¢3=Kyph,
Kiyp (=
Fia. P 4-1

4-2. Prepare a circuit diagram for the computer solution of the servomechanism
system ghown in Fig. P 4-1. In your cireuit diagram make provisions to allow the
parameters K, and K, to be varied over the range 0 to 10, Assume the input to
the servomechanism is a unit step (& = 1 for { > 0). Make any time-scale
change and amplitude-scale changes that are necessary in order to keep the maxi-
mum output voltages of all amplifiers in the diagram in the range of 10 to 100 volta.

4-3. Prepare the circuit diagram for the computer solution of the transfer func-
tion obtained in Prob. 4-1b.

4-4. Hedraw the circuit diagram of Fig. 4-8 using REAC notation. Prepare a
table of potentiometer settings for your computer diagram.
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4-R. Derive the transfer function of each of the cireunits given in Fig. P 4-5.

Impedance values are in megohms and microfarads,
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CHAPTER 5

MULTIPLYING AND RESOLVING SERVOS

6-1. Introduction. In the previous chapters, the discussion of com-
ponents and problems has been restricted primarily to the require-
ments of the solution of linear systems. Fortunately, the analog com-
puter is eapable of solving problems other than those arising from the
study of linear systems. The availability of funetion multipliers allows
the solution of systems involving nonlinear equations and nonconstant
coefficients,

An entirely new field of investigation has thus been opened for the
engineer. In the past, system nonlinearities were undesirable obstacles
in the path of the design engineer. The only practical approach, in
most cases, was to linearize the system equations and hope the actual
system was adequately represented. With the aid of the analog com-
puter, however, an engineer is able to introduce nonlinear effects inten-
tionally into system equations and to study, rapidly and conveniently,
the effects of these nonlinearities upon the system behavior. To be
able to set up nonlinear systems on the analog computer, the operator
needs only to understand the eapabilities and limitations of a few more
tools than have already been introduced. Of greatest importance
among these is the function multiplier,

In the early phase of the rapid growth of the analog computer, the
design of function-multiplier equipment was a greater problem for
the design engineers than was the design of linear computer com-
ponents. This caused a lag of several years in the development of
electronie-multiplier gear that is truly compatible with the best linear
computing elements available. Many types of multipliers have been
proposed and built in the past few years, but all of these had major
disadvantages until recently. In fact, it was as recently as 1953 that
the first stabilized high-speed function multipliers became commer-
cially available.! The new all-electronic multipliers have accuracies
of 0.1 per cent or better and frequency-response characteristics com-
patible with the linear components. These new multipliers are the

L]
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first to provide high-accuracy and high-speed operation in the same
multipher.

Since one of the oldest multiplying devices, and as set the one most
commonly used, is the servomultiplier, it will be treated in the greatest
detail. Other common multipliers will be deseribed in Chap. 8 with
a brief discussion of the theory of operation and advantages and dis-
advantages of each type. The new electronic multiplier mentioned
above is described in that chapter.

6-2. Servomultipliers. The servomultiplier is a device which oper-
ates by the positioning of identical potentiometers proportional to a
voltage applied to the input of the servo. The accuracy of the device

i limited only by the linearity of the
Eﬁt' hay potentiometers which may be ob-
tained. The present limitation, due
Fia. 5-1. Multiplier symbol. to manufacturing tolerances, is ap-
proximately 0.025 per eent of full

scale for 10-turn potentiometers.

The frequency-response characteristic of high-precision servomulti-
pliers is quite poor and, in most instances, provides an upper limit to
the speed of solution of problems. The frequency response of servo-
multipliers may be improved appreciably, with some sacrifice of line-
arity, by using single-turn potentiometers and eliminating the indi-
cator dials that permit servomultipliers to double as high-accuracy
voltmeters.

A commonly used symbol for a multiplier is shown in Fig. 5-1,
where = and y are the inputs and z is proportional to the product of
z and y. The constant of proportionality k is determined by the
design of the multiplier and by the choice of scale factor made for the
problem. A choice of 1 volt = 1 unit in the problem setup will produce
a different proportionality constant from a choice of 10 volts = 1 unit.
It is for this reason that the author earlier suggested that a fixed scale
factor be adopted and used for all problems, linear or nonlinear.
Fewer mistakes will be made by the beginner if this is done.

While the above symbol for a multiplier is adequate for electronie
multipliers, it has been found desirable to use more detailed symbolism
when using servomultipliers. This is due to the ever-present need to
consider loading effects. The beginner will find that fewer mistakes
will be made if & more detailed symbolism is used, such as is shown in
Fig. 5-2. The servomultiplier consists of a servoamplifier and servo-
motor driving, by a mechanical connection, the wiper of two or more
identical precision potentiometers. In Fig. 5-2, these potentiometers
are indicated as F, A, B, and C. The first potentiometer F is used as

I
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an error-sensing device or follow-up potentiometer. The remaining
potentiometers are used as multiplier potentiometers.

The operation of servomultipliers in performing funection multipli-
cation is easily understood if the reader attempts to visualize the oper-
ation when a constant voltage is applied to the servo input. If a
constant voltage w is applied to the input of the servomultiplier, the
servomotor will drive the follow-up potentiometer, by a system of
gearing, to such a position that w volts is picked up by the wiper of
the follow-up potentiometer. At that time, the servomotor will cease
running, as the error signal, generated by a null-detecting network at
the input of the servoamplifier, is zero.

Consider now the follow-up potentiometer. Since the follow-up
potentiometer is linear, 4100 and — 100 volts are applied to the ends

+ 100 +x - T

A § ‘ B é \ E§ \
= 105 -x +¥ -z
wE iy e

= 100 100 100
Fia. 5-2. The symbolism commonly employed to represent a servomultiplier.

=

of the potentiometer, and no current is drawn from the potentiometer
wiper at the null position; the only position the potentiometer wiper
can have and pick up +w volts is w/100 of the distance from the
center to the positive end of the potentiometer, This is easily visu-
alized if the reader keeps in mind that the voltage at the geometrical
center of the potentiometer is zero because of the equal but opposite
in sign, + 100, voltages placed at the ends of the follow-up potenti-
ometer. The multiplier potentiometers are connected, by means of a
common shaft or by gearing, to the follow-up potentiometer. Each of
the wipers of the multiplier potentiometers is thus positioned to a
position w/100 from the center to an extremity of the potentiometer.
If equal but of opposite sign voltages, +x, ty, and +z are placed at
the ends of the multiplier potentiometers, the voltages at the respective
potentiometer wipers are w/100 of the voltages z, y, and z.

The signs of the multiplier output voltages are determined by the
sign of the servo input voltage w and the manner of connection of the
voltages +x, +y, and 42z As can be seen In Fig. 52, to change
the sign of the product voltage obtained at the wiper of a particular
multiplier potentiometer, it is only necessary to interchange the con-
nections of the inputs to that potentiometer,
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The description of the servomultiplier given above is for a constant
input voltage w. The operation of the device is identically the same,
however, if w 18 a continuous time-varying function. The major
requirement placed on the input function w is that it must vary suf-
ficiently slowly that the servo may, at all times, remain accurately
positioned proportional to the voltage representing the function w.

The multiplier, as described above, is capable of four-quadrant
multiplication; in other words, the inputs w, z, y, and z may take on
either positive or negative values and the proper sign will be affixed
to the product. The circuit does require, however, that +z, +y, and
+z be available, If four-quadrant multiplication is not necessary, as
in the case where w can take on only positive values, then only the
positive or negative value of the quantities need be available if the
multiplier potentiometers are center-tapped and the center tap is
grounded. This arrangement is desirable, as one amplifier can often
be saved for each multiplication. It is important to emphasize that
the more slowly varying quantity should be chosen to drive the servo,
as the satisfactory operation of the device is based entirely upon
the ability of the servo to follow the input signal w accurately and
continuously.

To achieve the accuracy of operation that a servomultiplier is capa-
ble of delivering, the loading of the potentiometers must be considered
just as in the use of any potentiometers. Fortunately, a very simple
scheme may be used to compensate for the loading errors. To com-
pensate for loading errors, it is necessary to load the follow-up potenti-
ometer identically to the load on the multiplier potentiometers. The
identical error is then induced on the follow-up potentiometer as is
present on the multiplier potentiometers provided the load on each
multiplier potentiometer is identical. With a load applied to the
follow-up potentiometer, the servopotentiometers will no longer be
displaced the geometrical distance w/100 from the center but they
will be displaced w/100 of the electrical length of the potentiometers
and the multiplication will be performed correctly. It is important
to note that indicator dials on the servomultipliers do not read properly
when the follow-up potentiometer is loaded.

In the setup of some problems on a computer, it would be desirable
to be able to load the multiplier potentiometers of a servomultiplier
with different loads, as would be done if the multiplier outputs were
introduced to different gain inputs of computing amplifiers. Unfortu-
nately, this cannot conveniently be done by any scheme with which
the author is familiar. One method of compensation that the reader
should be cautioned against is the indiscriminate use of coefficient
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potentiometers as isolation of multiplier potentiometers to permit the
use of different gains on the inputs of amplifiers fed by the multiplier.
This scheme is shown in Fig. 5-3. A careful analysis of the loading
reveals that the loading of the multiplier potentiometers is not uni-
form, and for some combinations of potentiometer settings, the multi-
plier errors due to the unequal loading are very appreciable. A sound
rule for the beginner to follow is never to load a potentiometer with a
second potentiometer without first considering the errors introduced
into the computer results by the loading effects.

In Fig. 5-3, if coefficient potentiometers 1 and 2 have a total resist-
ance of 30,000 ohms each, and if potentiometer 1 is set at 0.9 and

- +100 +y +z
E | Servo FA B
30K =100 =¥
= 0.1 ks E

Fia. 5-3. The tmproper use of coeflicient potentiometers to achieve a common
servomultiplier potentiometer loading.

potentiometer 2 is set at 0.1, then the actual loads on the multiplier
potentiometers A and B are 24,200 and 29,910 ohms, respectively.
This difference in loading is sufficient to induce appreciable errors into
the computer results,

6-3. Division. To many it may appear obvious, on superficial
examination, that the servomultiplier can be easily converted to a
deviee capable of performing division by replacing the fixed 4100 and
— 100 reference voltages at the ends of the follow-up potentiometer
with variable voltages 4u and —u, respectively. If this is done, the
output of the A multiplier potentiometer of Fig. 5-2 becomes wz/u.
In actual practice, this method of division is seldom used, since satis-
factory operation of the servomechanism is not easily achieved while
using this scheme.

The open-loop gain, and thus the stability and sensitivity of the
servomechanism, is a function of the voltage applied to the ends of
the follow-up potentiometer. If the voltage u, applied to the follow-up
potentiometer, is varied over a wide range of values, no constant set-
ting of the servoamplifier gain can give satisfactory operation. If the
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servoamplifier is provided with an automatic gain-controlling device,
fairly good operation using this division scheme can be achieved except
when very low values of the voltage u are used. For low values of u,
the operation, even with an automatic-gain-controlled servoamplifier,
is marginal and other division schemes commonly employed will pro-
duce better results. For this reason, most servomultipliers are not
provided with an automatic-gain-control amplifier and should never
be used for division by replacing the follow-up voltages by variable
functions.

Several schemes of performing division are available which will work
satisfactorily with any multiplying device. These schemes are all

D

=I

Fia. 5-4. Division eircuit.

based upon the solution of an implicit equation of the form

z + kyz(z,y) = 0 (5-1)
where r = dividend
y = divisor
z = gquotient

k = scale-factor constant
One of the most commonly used circuits to perform division is illus-
trated in Fig. 54. Equating the unknown output of amplifier 15 in
Fig. 5-4 to the amplifier inputs gives

— = — vz
z r+x+l['ﬂ] (5-2)

Division by the quantity y has thus been accomplished. In the eir-
cuit, as drawn in Fig. 5-4, the quantity y driving the servo must be
positive. If y is negative, satisfactory operation may be achieved

_ ;.
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by interchanging the high and the low connections of the multiplier
potentiometer. Division by a quantity y which approaches zero will
eventually cause an overload of

amplifier 15 or 16, since forz = 0 | P I\ !
=y +ke,)
imZ=w (54 © b/ "
w0 I V

Even if both z and y approach Fio. 55 An infinite-gain  amplifier
zero simultaneously, trouble will formed by using positive feedback.
be encountered for sufficiently small values of y.

An improved division circuit may be formed from the eircuit of
Fig. 5-4 by noting that the portion of the circuit involving the two
amplifiers with feedback forms an amplifier of infinite gain only if the
gain-1 inputs of the amplifiers are exactly unity. This may be seen
by considering Fig. 5-5. If the
gain of the feedback is k, then

=&+ ke,  (5-5)

[ |
o« 1-F &8
Ifk = +1,
¥ Servo
[
— = o (5-7)
1M &

= Assume that an error of 0.1 per
Fro, 56, An improved division cirenit cent is present in the gain of the

using only a single high-gain amplifier. ;
The reader is suain reminded that the feedback loop; then, for a value
use of numbers designating gains at the ©f & = 0.999,

inputs of the symbol for a high-gain . 1 1

amplifier implies the presence of input £ = - = 1.000
resistors having values that are the & 1 — 0999  0.00] !
inverse of the gains in megohms. (5-8)

The gain has been reduced by the emall error from a theoretical value
of infinity to only 1,000. Most high-quality computing amplifiers have
gains of the order of magnitude of 100,000 to 60,000,000. Certainly
then, in general, improved operation will result from the use of a single
high-gain amplifier to replace the “infinite’’-gain amplifier formed by
the use of two amplifiers with positive feedback. This cireuit is shown
in Fig. 5-6. _

The analysis of this circuit proceeds in a similar manner if it is noted
that the gain of the amplifier is very high. Then, for z to remain
within the operating range of the amplifier, the sum of the inputs

Sl B R
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must differ from zero by only a very small amount. The unknown
output z can then be determined by equating the sum of the inputs to

zero as in Eqs. (5-9) and (5-10):

vz _
100 = ° (5-9)
7 = '__Iy@ (5-10)

An analysis of the effect of finite amplifier gain on the operation of
the division circuit is of interest, as it emphasizes the desirability of
keeping the voltage driving the servo as large as possible. Assume
the high®fain amplifier to have a gain — A; then, from Fig. 5-6,

2= -—A(::—J—l!:;}) (5-11)

— 100
== l”l_.i},-'"..."l T N {5_12}

It is readily seen that errors due to a finite gain result in an error
term in the divisor. Any alignment error present in the servomulti-
plier potentiometers appears as a similar term. The effects of these
errors may be minimized by keeping the divisor as large as possible,

Stability must always be considered when generating functions by
implicit techniques. A criterion for stability which has been devel-
oped is that the cirenit will be stable with plus F(z) as the amplifier
input if 8F/dz > 0 and plus z is the output of the high-gain amplifier,
If aF /9z < 0, minus F(z) must be fed back to the high-gain amplifier
to ensure stability.?

A simple analysis of the eircuit is normally all that is required to
ensure that this condition is satisfied. Consider the division eircuit of
Fig. 5-7. Assume that the sign of the divisor is always positive and
the numerator # may take on both positive and negative values,  Arbi-

trarily, assign a positive value to ¢ as indicated in Fig. 5-7. Then the

output of the high-gain amplifier must be negative. Since the input §
of the servo was assumed to be always positive, the wiper of the multi-
plier potentiometer must be picking up a negative voltage, The con-
cept of operation of the division circuit is based upon the sum of the
inputs of the high-gain amplifier being equal to zero. This condition
can be satisfied with the connections as shown. Assume, however,
that the connections at the ends of the servomultiplier potentiometer
are interchanged; the voltage at the wiper of the potentiometer will
then be positive. Obviously, two positive voltages applied to the
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input of the high-gain amplifier cannot add up to give zero, and the
circuit must be unstable. This simply applied test can prove that a
system is unstable but does not prove stability, Most often this is
the only test needed, however, as the computer operator usually
remembers the form of a eircuit which has previously proved useful
but may not remember the exaet connections,

The circuit illustrated above is wasteful of equipment in that con-
nections to both ends of a multiplier potentiometer need never be made
simultaneously in a division circuit if a center tap is available on the
multiplier potentiometer.

=

Fra. 5-7. Division circuit demonstrating a practical method of checking stability.

Oecasionally, it is necessary to perform a division by a quantity
which 15 zero at the start of the computation but s finite at all other
times in the computation. This can often be accomplished with negli-
gible error by adding a small error signal to the divisor at { = 0. The
nature of the error must be such that it rapidly becomes zero for { > 0.

Example B-1. A problem setup requires the division of a dependent variable
rif) by the independent variable {.  The setup of this portion of the problem might
be satisflactorily accomplished as in Fig. 5-8. The input € i8 supplied from a eir-

cuit generating
e = Aegtsr (6-13)

where the time constant ean be made arbitrarily short by adjusting potentiometer
2 and the magnitude of ¢« can be changed by adjusting the initial condition of
integrator 2,  In operation, « should be made only large enough to prevent over-
londs. If a slight increase in the magnitude and duration of « will produce no
appreciable change in the problem results, then it ean be assumed that the solution
in sntiafnctory.
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xi)

+100

@L‘:\ = .1\3 Servo 1

@-E 10 —

Fi1a. 5-8. Method of performing division by a function that is zero at ¢ = 0.

6-4. Square Root. The generation of square-root eircuits by
implicit function techniques follows a similar line of reasoning to that
involved in the division eircuit. The equation solved is

=l
Since the output of the high-gain amplifier (Fig. 59) must remain
finite, the equation for the cireuit can be written by equating the sum
of the inputs to zero, giving

;t
or 2= —104/T (5-15)

As in the division eircuit, difficulty will be encountered in the vicinity
of z = 0. Negative values of x are prohibited, since again instability
would arise.

If it is desired to use —z as the input of the square-root circuit,
this may be accomplished by interchanging the connections at the
ends of the multiplier potentiometer. The proper connection of the
high and low of the multiplier potentiometer, for stable operation, can
easily be determined by the same procedure as was applied to the
division cireuit.

In many cases, it is desirable to produce the square root of a quantity
which is zero at some time during the computation, More satisfac
results will normally be obtained in these instances by generating +/z

—_—— e — et R B

MULTIPLYING AND RESOLVING SERVOS 75

with arbitrary-function-generating equipment of the types to be dis-
cussed in Chap. 8.

It should be apparent to the reader by this time that other func-
tions involving roots and powers, such as r¥ can be generated by
similar methods. The amount of equipment needed, however, should
be weighed carefully against the possibility of using arbitrary-function-
generating equipment to generate the desired function.

1M

+ 100

Fia. 5-9. Bgquare-root circuit.

To further elarify the use of multiplying equipment in the solution
of differential equations, an illustrative problem will be set up. - The
example combines the use of multiplication, division, and square-root
circuits into a single problem. Particular attention should be paid to
the use of amplifiers to avoid loading effects on the potentiometers.

Example 5-2. The system of equations is

T
a =Vt +F‘“ = (= + 7)) (5-16)
dy ¥
- - —_— (1 — {(z*
The initial conditions are
r(0)) = a y(0) = b (5-18)

The cireuit dingram is shown in Fig. 5-10. A plot of = vs. { and y vs. ¢ is given in
Fig. 511, Of additional interest is the plot of = vs. y of Fig. 5-12. Regardless of
the magnitude of the initial conditions, the system is seen to oscillate in a sinusoidal
muanner with a maximum magnitude of unity,
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Fia. 5-10.

zt <+ o,

In the diagram ¢ =

Circuit to solve the system deseribed by Eqs. (5-16) to (5-18).
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Fig. 5-11, The computer plot of = va. ¢ and y va. ¢ produced by the cirenit of Fig.
5-10. The initial conditions are (0} = y(0) = 1,
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Fia, 812, Plot of y vs. x for several values of x(0) and y(0). This plot demon-
strates the nature of the steady-state solution of the problem solved by the eircuit
of Fig. 510,

6-6. Resolving Servos. Frequently there arises a need for the
inclusion of the trigonometric functions in the solution of problems,
The need may arise from the requirement to transform vector quanti-
ties from one reference axis to another, as is often necessary in the
evaluation of guided-missile systems. [t may also arise from a great
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variety of other systems, mechanical or electrical, for which small-
angle assumptions are not valid.

The trigonometric transformations required are normally of two
types: polar to rectangular, or rectangular to polar. Of these, the
first transformation is by far the simpler to mechanize, as will be seen
in the following pages.

The polar-to-rectangular transformation—or, being consistent with
common terminology, the “ rectangular' transformation—is illustrated
by the geometry of Fig. 5-13. If the vector r and the angle # are

P ——

Fio. 6-14. Rotation of axis,

Fra. 6-13, Geometry of the polar-
to-rectangular transformation. If
r and @ are known, x and y can be
determined.

known, then the vector quantities along the x, y coordinate axes are
expressable as in Eq. (5-19):

T = rcosé y = rsin@ (5-19)

Correspandingly, rotation of axis of one rectangular coordinate system
to a second rectangular coordinate system with a common origin (Fig,
5-14) is accomplished by the equations

u = rcosf 4+ ysinf
v = —zrsind + ycosd (5-20)

where # is the angle between the coordinate axis.

Problems involving the rotation of axis arise most frequently in the
field of guided-missile studies. In the simulation of guided missiles
the nature of the equations is such that axis transformations are used
extensively. A complete three-dimensional study of problems of this
type requires the use of the Euler angle transformations® requiring
more resolver capacity than that available at many computing instal-
lations throughout the country. As an illustration of the importance
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of Euler angle transformations in three-dimensional missile studies, it
may be noted that the Typhoon computer* has one section of the
machine devoted solely to this transformation, with all connections
permanently wired. The Typhoon computer is a large-scale analog
computer designed specifically for missile-simulation studies.

The second transformation, rectangular to polar, or simply the
“polar” transformation, arises when the rectangular coordinates are
known and it is necessary to determine the magnitude and angle of
the resultant vector. The problem is identical to finding

f = t.ﬂ.n"% r= 41 4yt (5-21)

as in Fig. 5-13.

The generation of the functions sin # and cos # can be accomplished
by using only summing and integrating amplifiers and multipliers.
The generation of the sine and cosine functions is treated in Sec. 6-2.
The necessity of generating # = tan—! (y/z) can sometimes be avoided
by expressing the equations in polar form. Most tasks can therefore
be accomplished without resolver equipment, but only at the expense
of using considerable multiplying and linear equipment. Problems
such as missile-simulation problems would be virtually prohibitive
without resolvers, however. Resolvers have become a very impor-
tant item in & computing laboratory and frequently provide the sim-
plest problem setup even when their use could be avoided.

There are two main types of resolving servos in use today: those
using a-¢ resolvers and demodulators, and those employing d-c sine
and cosine potentiometers. Of these, the a-¢ resolver servos presently
used in computer installations are definitely inferior. The difficulty
encountered is the drift associated with the demodulator eireuit,
While using a-¢ resolvers it is ordinarily very difficult to maintain
accuracy better than 1.0 per cent without frequent recalibration. The
d-c resolvers, on the other hand, are superior in that they are free from
drift and consequently require calibration infrequently. As there are
no a-¢ resolver servos being produced today for analog computer use,
the remainder of the section will be devoted to the d-c resolvers.

A relatively low-cost resolver can be constructed, utilizing a ree-
tangular-card sine-cosine potentiometer' (Fig. 5-15). The potenti-
ometer consists of a linearly wound card with four wiper contacts
asccurately positioned at right angles. The distance between diametri-
cally opposite wipers is exactly half the length of the winding of the
card, As the card is rotated the wipers pick up voltages as indicated

* Typhoon eomputer—U.8, Naval Air Development Center, Johnsville, Pa.




a0 ANALOG COMPUTER TECHNIQUES

in Fig. 5-15. Exact centering of the axis of rotation is unimportant,
as any constant voltage will be canceled upon subtracting the two
components of the sine and cosine. The accuracy of such devices is
limited to approximately 0.6 per cent.

More precise trigonometric functions may be developed, using
tapered potentiometers. The arrangement of such devices, as used in
resolvers marketed by Reeves Instrument Corporation and Electronie
Associates, Inc., is shown in Fig. 5-16. Each potentiometer consists
of four tapered windings connected together and has two wiper con-
tacts spaced 90° apart. The potentiometers are connected in pairs to

+u
|
lucosd : At | u sin @
——8
e
..*usirrﬂ - - \_‘I—E——i—umsi
-u

Fia. 5-15. Card-type resolver potentiometer.

a servo in such a manner that the wipers of the two potentiometers
are oriented 90° apart. One pair of contacts pick up voltages propor-
tional to + cos # and — sin ¢ while the wipers of the second potenti-
ometer pick up voltages proportional to <+ cos # and + sin 6. These
are the voltages necessary to mechanize the equation # = tan—! (y/x).

To understand the operation of the polar resolvers, consider the
geometry of Fig. 5-17. From the figure it is seen that

K= Acosf+ Bsind (5-22)
Beos@ — Asing =0 (5-23)

From the geometry of Fig. 5-17, it can be seen that Eq. (5-23) is valid
only if

8 = tnn—'g (5-24)
If an error exists in the angle 8, Eq. (5-23) becomes
Beos@ — Aging = q (5-25)
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where ¢ is an error signal which may be used to drive the servo to the
null position. A block diagram of the complete polar resolver is shown
in Fig. 5-18. The connections shown in dotted lines must be wired
externally in order to make the automatic-gain-control feature oper-
ative. The functioning of the automatic gain control is to make the
servo gain approximately constant for ranges of A and B of 0 to 100
volts, This feature is necessary, since for A and B both small, the
error signal derived from a given error in @ is small compared to the
error signal for A and B large. Very poor servo operation would
> —Asing Tesultif noautomatic gain control
! were provided,

ﬂ The A and B amplifiers in Fig,

5-18 are wired internally in the

~-A +4 resolver unit; however, since they
A co
s f ¥

X Bcosp

-B +B
; Bsing
b

H X
Fia. 5-16, Tapered sine-cosine potenti-  Fra, 5-17. Geometry of the equations
nmeters, mechanized in a polar resolver,

nre standard computer amplifiers, provision has been made whereby
they may be used as inverting amplifiers in problems not requiring the
use of resolvers.

The functioning of the resolver servos in the rectangular transfor-
mation is much the same as the servo operation for multiplication,
This is true at least in that the angle # is brought to the input of the
servo and the normal feedback potentiometer is used as the error-
sensing device. A switch is provided on the servo chassis to inter-
connect the internal components in the proper manner for either rec-
tungular or polar operation,

Attention should be brought to the importance of loading resolver
potentiometers in rectangular operation. The REAC and Electronie
Associates computer resolver potentiometers are wound with a cor-
rection for a l-megohm load. If loadings other than 1 megohm are
used, an error will be present,
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Fra. 5-18. Block diagram of a REAC resolver.

§-6. Choice of Rectangular or Polar Coordinates. The equations
of motion of a system can be expressed in either polar or rectl.angula.r
coordinates. The computer circuit diagram can m:-rmapu::.dmgly be
prepared from either set of equations. Question mayﬁhe mmed‘, thﬂ_n,
regarding the advantages or disadvantages of preparing eqt_mtmns in
either coordinate system for computer solution. Experience has
shown that there are very definitely strong arguments in ffwur of
the polar form of the equations. These arguments may be listed as

lows:

i‘Imll. The polar form of the equations ensures the kuﬂwlm:}ge of the
vector and angle, requiring only the rectangular transformation to find
the z and y components of the vector. The rectangular form of the
equations requires the polar transformation to be performed in order
to find the resultant and angle. In general, it will be found that
greater accuracy may be attained in determining sin ¢ and cos @ rather

than @ = tan—' (B/A) and r = /2% + y*.

2. When using the rectangular transformation, rmn!vm need l?ut.
be used. Any of the other means of generating the sine and cosine

of an angle may be employed, as discussed in Chap. 6.

3. Ordinarily, appreciably less equipment will be required for the

—_— = =z & =
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setup of a system expressed in polar coordinates than for one expressed
in rectangular coordinates.

It would seem, then, that the i
very first step in the setup of a sys-
tem is to ensure that the equa-
tions are expressed in polar form.
Doing this will often simplify the
preparation of circuit diagrams.
A typical example of a problem
where there is much to be gained
by proper choice of coordinate

system is the computation of
bomb trajectories. Fra. 5-19. Geometry of the bomb-trajee-
tory problem.

Example 6-3. It is desired to deter-

mine the trajectory of a bomb dropped from an aireraft. The geometry of the
syetem is as illustrated in Fig, 5-19,

The equations of motion of the system are

= T

dVe
M - — [ cos @ (5-26G)
M‘ﬂf = W — Dasin ¢ (5-27)
D= Y4 Vipscy (5-28)
p = 0.002378(1 — 0,135 X 10-*)® (5-20)
Ve =V cos # (5-30)
V, = Vsin @ (5-31)
= [V,dl (5-33)
where M = mass of bomb
W = weight of bomb
Ve = z component of veloeity
¥V, = y component of velocity
V = veloeity of bomb
[ = drag
# = angle from horizontal to velocity vector (5-34)
g = density of air
& = characteristic area of bomb
U'p = coefficient of drag
hy = launch altitude
Vo = initial velocity
The physical constants of the bomb are
W = 5,000 |b
8 = 10 ft2 (5-35)
Cp = 0,18
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The launch eonditions are -~
he = 20,000 CE-gokc
Vi = 500 ft sec [5-36) - e
By = 0°, 10°, 20° FHEEE:
~| 518l
The first step to take in the preparation of this system of equations for computer e 71 1 R
solution is to perform the transformation from rectangular to polar eoordinates. - =|L 'Elt
(It is suggested that the reader set up the system in rectangular coordinates as a ?
eomparizon of the methods.) The transformation to polar coordinates may best | 8| £

Servo 4
In
-
-5
e 1
=Ag
A co
H_sl
B‘Eﬂi

be carried out in the manner demonstrated below,
Differentiating Eqs. (5-30) and (5-31) produces Eqs. (5-37) and (5-38):

2 B
dV, dV o df - b £
T —Imﬂ—l-’am B (5-37) E =
dv, dvV . : do _ ' 0
i 4 S 4+ V cos Ed'-! (5-38) E rj §
3 3 -
Bubstituting Eqs, (5-37) and (5-38) in Faqa. (5-26) and (5-27), respectively, gives 8 = 'E
—_ —
dv da £ 3 T E
—— Il | —_— o — _- =Y L
M i 08 @ MV =in E{H FERC N (5-319) e -."F E
daV . de . e =
Mﬁmnﬂ-}-.‘f}’ cos 8- = W — D sin 9 (5-40) i - z
‘ © 5 ;
Bolving for dé/dé and dV /di from Eqs. (5-39) and (5-40) by using determinants u.I:r .E
gives Fas. (5-41) and (5-42): :-E o 2
¥ o @
M cos # — D cos @ ' =
@ Msinég W — I)sin @ g cos 8 ,. ’ E, &
dt " (Mcos8 —MVsing| V (5-41) /=N <
| M sin @ MV cos 8 = = E
| ~D cosd —MV sin @) =2 + ' E
dVV _|W — Dsginé +MVeosf| D . - "': ‘
dt " | Mocosd — MV sin 8 3 tosn® (5-42) E“) = - % g
| M ain @ + MV cos # a8 . i = “1"
= *If E I 3 : g
By means of Eqs. (5-28) to (5-33) and Egs. (5-41) and (5-42) the cireunit diagram K = w2 ' E =
may be prepared. 8 - — < %
For convenience in determining proper acale factors throughout the problem, it o E Eg\/\&—a ]
is wise at this point to tabulate the range of the parameters in the system. For' o = p N ;
thia problem the approximate ranges are i; 'E é - f"_-'
5 o e =
0 <8 < 1.57 radians ) I &
V. < 500 ft/sec Te all=
V, < 1,136 ft/sec & l——’":/\,r-lll
V < +/V.2(max) + V,? (max) = 1,240 ft /sec (5-43) 5 =2
df g .
I < Ve = 1,06 radian /sec L
k< 20,000 ft
e < 17,620 ft S
t < 35.24 sec -
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All the above information is available from the problem statement if a little rea-
son is applied. Very helpful in arriving at the above approximate limits of V,, V,,
¥, z, and { is the calculation of the vacuum trajectory. This calculation is impor-
tant for another reason, as it provides a check of the machine solution if the drag
is set equal to zero., The time spent in analysis of this type will ordinarily pay
large dividends in time saved, as has been previously emphasized.

Keeping in mind the maximum range of the variables, the circuit diagram can
now be prepared as in Fig. 5-20. Resolvers have been used in this circuit diagram,
but it should be pointed out that the eireuit might just as well be prepared using

20

15

B
LW

0 5 10
x. ft= 10-3
Fia. 5-21. Bomb trajectories,

h, ftx 10-2

any other means of generating the sine and cosine functions. The results obtained
with thia circuit diagram for launch angles 8 = 0%, 107, 20°, and 30" are included
in Fig. 521.

PROBLEMS

5-1. In Fig. 5-3, if the input to the servo z is 60 volta and the loads on the multi=
plier potentiometers A and B, respectively, are 24,260 ochms and 29,910 ohms, what
is the error in each output of the multiplier? Hixt: Caleulate the loading corree-
tion for each of the potentiometers F, A, and B. Do not consider second -order
eflects.

6-2. It is occasionally desirable to perform the operation of division with the
servomultiplier driven by the quotient rather than the divisor. (a) Bhow that
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the cireuit of Fig. P 5-2 is eapable of fulfilling this requirement. (b)) What, if any,
restrictions are placed upon the magnitude and sign of the inputs r and y by the
vireuit?

+100 +¥

=100 | -y

Fia. P 5-2. Resistance values are given in megohms.

6-3. Determine the output z of the cireuit of Fig. P 5-3. What restrictions are
placed upon z7?

TR — z=1

+100

= =100
Fia. P 53

6-4. Determine the output z of the cireuit of Fig. P 5-4. What restrictions are
placed upon x and y if 2| < 4 100 volts?

X

+1

=100

Fra. P 5-4. Resistance values are given in megohmas,

6-6. Show a circuit eapable of generating the cube root of & variable. Hint:
The equation solved is z = 22/104,
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6-6. Devise a circuit diagram for the computer solution of the nonlinear equation

T —all =) F 42 =0
where &« = 1 and where the svetem iz exeited by initial conditions on r and dz/df.
Nore: The solution of this equation will reach a steady-state sustained oseillation
regardless of the values of the initial conditions used in the problem. Examina-
tion of the damping term will permit the reader to estimate the approximate magni-
tude of the sustained oscillation in order to choose properly the amplitude-scale
factor of the problem. A plot of x va. dz/d! illustrates the nature of the solution
of this equation very effectively.

6-7. For the circuit of Fig. 58, what is the error present if the impedance of
the lower gain-1 input of the amplifier is 0.99 megohm instead of 1.0 megohm?  Is
the percentage error greater or smaller for large values of the input 27
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CHAPTER O

ADDITIONAL COMPUTER TECHNIQUES

6-1. Introduction. In the earlier chapters, with the exception of
Chap. 4, the main emphasis was on the introduetion of the basic com-
puter components, In this chapter an effort will be made to expand
the usefulness of these tools by the introduction of new technigques.

In the earlier sections of this chapter, methods of generating fune-
tions internally in the computer will be described. Greatest emphasis
will be placed on the trigonometric funetions, although other functions
submit themselves tosimilar techniques. The later portion of the chap-
ter will be devoted to methods of overcoming one of the shortecomings of
the d-¢ electronic analog computers, namely, ‘electronic instabilities.

6-2. Analytic-function Generation. Analytic functions needed in
the solution of systems of differential equations are themselves often
the solution of a differential equation. Typical examples of this type
of function are sin §f, cos g, and ¢, where « and 8 are constants
and { is the independent variable, A similar group of functions posing
a somewhat more difficult setup problem are sin x, cos z, and e,
where x is a dependent variable of the problem.

The setup of functions that are the solution of differential equations
is best achieved by repeatedly
differentiating the function to
obtain the differential equation
representing the desired function.
This technique iz illustrated by
the following examples.

Example 8-1. Generate the func-
tion

Initial condition = —y(01= =1

y =g (6-1) Fra. 61, Circuit for the solution of
y = e Beale factor has been neg-

Differentinting Foq. (6-1) gives lected.
:'?‘I - —ge " = —ay (6-2)

The machine diagram for the generation of y = ¢ = can therefore be represented

LA h ﬁq G-1.
80
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In this example the problem voltage level has not been considered
but as always should be included in any final setup. It may be noted
here that, to change the amplitude-scale factor of the setup, it is neces-
sary to change only the initial condition applied to the system, since
the system is linear.

Example 8-2. Generate the funetions sin 8¢ and cos 8t where § is a constant.
Differentiating each of the functions gives

d

7 8in Bt = B cos i (6-3)

Jicos Bt = —p sin gt (6-4)
Next, integrating Eqs. (6-3) and (8-4) above givea

gin i = 8 cos B dt (6-5)

cos At = —ff sin Bt di (6-6)

From these equations, the circuit diagram may be prepared as in Fig. 6-2.
Initial condition =cos 0=1

=B cos Bt

=

F1a. 6-2. Generation of sin 8 and cos 8¢, where 3 is a constant.

Again, scale factors should be considered before placing the problem
on the machine. As in the previous example, the amplitude scale fac-
tor can be changed simply by multiplying the initial conditions and
all terms of the equations by a constant. In this example, either
potentiometer 1 or potentiometer 2 could be eliminated ; however, they
are usually both retained for convenience in altering the frequency 8.

Example 6-3. Generate the function

y - e (8-7)

where £ = z{{). Differentiating Eq. (6-7) gives

d dr _,
.-J-F-—Eg (6-8)
4.k “

In this example, the differential equation is nonlinear, so that the technique of
adjusting seale factor by changing the initial conditions of the system no longer
applies. The scale factor should, therefore, be considered before attempting to
prepare the circuit diagram. An estimate of the magnitude of p is necessary,
Assume y(max) = 10 units; then multiplying Eq. (6-8) by a factor of B, to give a
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maximum voltage of 50 volte at the output of integrator 1 (Fig. 6-3), gives

dy dz
5o = =53 ¥ (6-10)

From Eq. (6-10), the circuit disgram of Fig. 6-3 is easily prepared. In the eir-
cuit, it is assumed that 10 dz/di is available at some other point in the eireuit not
considered here.

Initial condition = = Se =i

+ 100
dx

105
— | Servol

:

Fia. 6-3, Generation of y = ¢ * where y and r are dependent problem variables.

Imitial condition = sin x|0)

dr

=015 cos x \

dr ‘lﬂ ) sin x

‘ /4-313 high

+100 - Cps X S0 x

High High
10 :IT‘ 0.1 :—:iin x
Servo 1 A B 2gl0
Low Low
iﬂ.l M =100 +£o5 X =gin x

Initial condition = cos x/0)

0.1 == sin x _
S1B o 1] H—5 L g COSX _ S1dhigh
S1A low

Fia, 6-4. Qeneration of sin r and cos r where z is a dependent problem variable.

Example 8-4. Generate the function sin z where £ = z{{). As in Example
-2, the procedure in to differentiate sin x and cos =, giving Eqs. (6-11) and (6-12):
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Gsinz = S oosz (6-11)
Sieonz = — % sin 7 (6-12)
Integrating both sides of Eqe. (6-11) and (6-12) gives
sinz = [ 9 coq 2 d (6-13)
m:=—fdfm'“.ﬂ (6-14)

Neglecting scale factor, the cireuit diagram is shown in Fig. 6-4.  Again, 10 dz/di
ia assumed to be available.

Other funections that may be generated internally on a computer by
similar techniques to those illustrated in the previous examples are
exponential, logarithmie, and hyperbolic funetions, A few of the many
possible circuits generating functions of these types are illustrated in
subsequent examples.

Example 8-6. Generate the function
o= Al ¥+ a) (6-15)
Here the best approach is to first take the logarithm of both sides of Fq. (6-15) and
Initial condition =y0)

—

by o ¥

itial condition =
Initial conditi a 41

-1 -1 [t+a) Servo 1

—
il M =100

Fia. 6=5. Generation of y = A{f + a)~.

then differentiate to form a differential equation. Carrying out these operations

gives
Iny =In A 4+ nln (f 4+ a) (6-16)
1 dy T
yit " i+a o48
il n
i " ita (6-18)
¥(0) = Aa® (6-19)
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The eircuit diagram for the generation of the function of Eq. (6-15) ean therefore
b drawn as in Fig. 6-5.

The technique used in this example, taking the logarithm of each
side of the equation, is particularly useful in the generation of funec-
tions involving exponents.

Example 6-6. Generate the function
z=In{{ +a) (6-20)

Differentiation produces the new equation

dz 1
Frial (6-31)
where 2(0) =Ina (6-22)

It is possible to proceed from Egs. (6-21) and (6-22) to generate the function z by
obtaining the function 1/(t 4 a) by the process of division. One amplifier ean
be saved in generation of z, however, if it is noted that

dz 1

d -~ YT i ¥a (6-23)
can be generated by differentiating Fq. (6-23) to produce
dy 1
" " dtar- TV (6-24)
where yi0) = % (6-25)

A Turther advantage obtained by proceeding in this manner is that more precise
results can usually be obtained by the process of multiplication than by the process
of division. The eircuit diagram for the generation of the funetion defined by
I, (6-20) and utilizing the results of Eqs. (6-24) and (6-25) is shown in Fig. 6-6,

Initial condition = - ? Initial condition =10 In &

- ~10y = -2 10101
§14 fta” bl 1 e Ny | pyo=riiinlitel
<+ 100

% B
£+ a)

. .1&10

A
Servo 1 J_

01 M -100

T

Fra. 6-6. Generation of 2 = In (i 4 a).

e e e ey P R A e S g == el e S e e ey
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Exzample 8-T. Generate the function
z = gt (6-26)

Differentiating Eq. (6-26) produces the equation

X wdlna=zina (6-27)
where 2(0) =1 (B-28)
The setup of Fq. (6-27) can take on two forms, depending upon the value of In a.
Initial condition =1

Imitial condition =1

Ina<0 Ina>0
la) (b

Fia. 6-7. Generation of z = a' for (a) values of In a < 0, (b) values of In a > 0.

If In a < 0, the circuit will be as shown in Fig. 6-7a. For values of In a > 0, the
eireuit will be as shown in Fig. 6-Th,
Example 6-8. Generate the function

y = e’ (6-29)
Proceeding as in the previous examples, the function can be differentiated to

Initial condition = 10el=®F

+100

Fia. 6-8, Generation of y = ¢**".
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give
dy dr dz
F i 2ar ae = 2azx T {6-30)
where y(0) = gol=im)e (6-31)

In the setup of this function the quantity dr/di must be available from some other
source, Assuming that 10 dz/di is available, the setup of y = exp ar? is given in
Fig. G-8.

Example 68-8. As a final example of the generation of functions that are the
solution of differential equations, the generation of the function

y = cosh al (6-32)

will be demonstrated. The similarity of the hyperbolic functions to the trigono-
metrie funetions suggests that a similar technique to that used for the generation
of the trigopnometric functions ean be applied, Following the procedure used in
the setup of the trigonometric functions, the hyperbolic sine and hyperbolic cosine
ean each be differentiated once, as in Eqs. (6-33) and (6-34):

£ sinh at = a cosh at (6-33)
% cos al = g sinh af (f=34)
Next, integrating both sides of Eqs. (6-33) and (6-34) gives the new equations
sinh al = af cosh af di {6-35)
cosh af = af sinh af di (6-36)

As before, the integration of the right side of the equations is only indicated, as
the computer will perform the actual integrations. From Eqs. (6-35) and (8-38),

Initial condition = -1

@ —a cosh at 1 ginh at ,-'E\ a sinh at ! —cosh at
WS

Fra. 6-9. Generation of sinh af and cosh af.

the circuit dingram for the generation of the hyperbolie funetions can easily be
drawn (Fig. 6-9).

In many instances, a quantity y = f(x) can be approximated by an
analytic function over the region of interest. Parabolas, hyperbolas,
exponentials, and polynomials of higher order are very useful in the
internal generation of this group of functions. A word of caution
should be inserted at this point regarding the use of polynomials in
fitting the curves, If the polynomial required to fit a particular fune-
tion is composed of alternatingly large positive and negative terms,
the polynomial will, in general, be inadequate for REAC use. The
magnitude of such a polynomial at any point is dependent upon the
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small differences of large quantities. A small error in the setting of
the parameters of the polynomial can therefore completely destroy the
fit of the polynomial.

6-3. Generalized Integration. The nature of the analog computer
is such that it permits the solution of problems having only one inde-
pendent variable, since time is the variable of integration of all the
computer integrators. The question may arise then as to the ability
of the computer to integrate with respect to a variable other than the

10
s 1 8
1041z}
+ 100
lu-n'l' %ﬂr] _'J"
‘—_—-J_ Servo 1 A e 1
LWL

=10fix)

Fia. 6-10, Cireuit for the solution of the equation y = [fiz) dz, where ¢ = x(t).

independent variable. This can be, and often is, accomplished in the
setup of problems. Consider Eq. (6-37), where ¢ is the independent
variable and x = #(f):

y= f flx) dx (6-37)

This equation ean be rewritten as

y = ffm i

It should be apparent to the reader that this equation can readily be |

set up on the computer if dr/df is available. The setup is shown in
Fig. 6-10. Here again, for convenience, it is assumed that 10 dr/dt
and 10 f(x) are available from other portions of the cireuit. This
circuit diagram has the disadvantage of requiring that dz/di, or some
multiple thereof, be available. If dr/dl is not available, it is usually
possible to avoid differentiating on the computer by modifying the
problem equations prior to setup so that dr/dt is available. In a few
problems, however, it is not practical to rewrite the system equations
in order to allow the explicit generation of dz/di. Such is the case
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when = must be introduced into the problem by the use of arbitrary-
function-generating equipment or when x is an output of actual hard-
ware forming part of a physical gimulation problem. If dz/df cannot
be formed explicitly in the computer, it is necessary to differentiate x
in order to form dx/di. The method of approximate differentiation
discussed in the next section is useful when differentiation must be
performed.

6-4. Approximate Differentiation. As was pointed out in the previ-
ous section, the situation does arise where it 1s absolutely necessary to
differentiate on an analog computer. In an earlier chapter it was

- \ [\
dx
2E= v - d
—*x L & LN R z 1 fedt
_h /

Fra, 6-11. Cirenit for approximate differentiation. As k is increased, —:z ap-
proaches the true derivative dr/fdf.

shown that differentiation could easily be performed by using a con-
denser and resistor as the input and feedback impedances, respectively,
of an operational amplifier. It was indicated at that time that differ-
entiation was a noise-amplifying process and was very undesirable.
In those applications where differentiation is necessary, satisfactory
results can usually be obtained by an approximate differentiation
which ean be made to approach arbitrarily close to a true derivative
at the discretion of the operator. In actual use, 1t is adjusted to be as
close to a true derivative as the noise level in the problem will permit.

The circuit for approximate differentiation is based on the solution
of the implicit equation

= —x — Jzdt + ks (6-38)
Rearrangement of FKeq. (6-38) gives
Jzdt 4+ 2(1 — k) = —=x (6-39)
It may be readily observed from Eq. (6-39) that
i dx
Lﬂ} = - (6-40)

The eireuit diagram for producing the approximate derivative is shown
in Fig. 6-11. The potentiometer setting £ is adjusted as near to unity
ag the noise level permits,
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6-6. A One-amplifier Circuit Representation of a Second-order
System. In the investigation of the behavior of physical systems,
it is frequently convenient to represent a portion of a system by differ-
ential equations and the remainder of the system by introduecing actual
hardware, such as an autopilot, into a computer setup of the system.
When actual hardware is introduced, the major problem is usually in
providing adequate transducers to change shaft rotations or other
forms of intelligence into d-c voltages compatible with the computer
requirements. Similarly, the inverse process of changing d-c voltages
into shaft rotations or other forms of inputs compatible with the physi-
cal components must be implemented. For a well-equipped labora-
tory, these obstacles can usually be overcome,

Physical simulation, using actual hardware in the system, places
greater demands upon a computer than does the simulation of sys-
tems represented entirely by mathematical equations. The added
requirement placed on the computer is that the problem must be
solved in natural time. Fortunately, the frequencies encountered in
the simulation of most mechanical systems are often compatible with
the useful frequency range of the analog computer. However, this is
not always the case, as some systems have very high natural frequencies,
If sufficiently high frequencies are encountered, the portion of the
problem simulated on the computer can become unstable because of
the high gains necessary in the circuit and the accumulative phase
ghift of the amplifiers,

Instabilities of the type that will be encountered here can be easily
demonstrated by placing on the computer the circuit for the solution
of the differential equation

T+ aty =0 (6-41)

where y(0) = A (6-42)
The ecomputer solution for this system should be

y = A cos wdd (6-43)
For small values of w, the results will check well with the theoretical

solution. For sufficiently high values of w, the computer results show

a divergence due to the phase shift in the computer amplifiers.* In
effect, the divergence will be similar to that normally expected if a
negative damping term is present in the system.

* A more precise treatment of the causes of the instability discussed here is given
in Chap. 10.
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One method of extending the useful frequency range of the com-
puter is to set up the system to be generated and arbitrarily add
damping into the system to produce a known response. This method
is not very practical for some systems, however. A second alternative
18 to reduce the number of amplifiers in the circuits and thus reduce
the cumulative phase shift. Since most systems of differential equa-
tiong are combinations of second-

i " V\VN——
and first-order equations, to be able R,
to represent a second-order differ- ﬁ'
ential equation with a single oper- i
ational amplifier is a very powerful R, B
method of extending the usable .‘—W:W__ —,
frequency range of the computer. IG:

Such a circuit has been successfully =

used in simulation problems to Fio. 6-12. One-amplifier circuit repre-

extend the useful frequency range of sentation of a second-order system.

the computer. A circuit which permits a one-amplifier representation

of & second-order system is shown in Fig. 6-12. It is apparent that this

is only another application of complex input and feedback techniques.
The transfer funetion for this cireuit can be expressed as

[ ™ R!_-'Illﬂl

6 T BB\ RCp( + BBy ¥ Ry 1 B

In the equation it ean be seen that by changing the magnitude of
Iy, Rs R, €4 and C:; any combination of frequency and damping
ratio can be represented. From the equation it can also be observed
that the least amount of ealculation i8 necessary if the resistors are
held constant and only €, and 'y are varied. Convenient values for
high-frequency systems are obtained by letting

Ry = R; = 0.05 megohm
and B: = 1 megohm. Equation (6-44) then can be expressed as

fa 1
o= T 006 X 10°C,0pt £ 205 X 106G, £1 (049)
The most convenient manner to use this circuit, if the frequency
and damping ratio must be varied frequently, is to prepare a nomo-
graph giving values of ', and C; for the interesting range of frequencies
and damping ratios. This chart (see Fig. 6-13) together with the use
of decade condensers for €', and Cy provides a very rapid and con-
venient method of varying the parameters of the problem.
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The circuit of Fig. 6-12 has been used successfully on REAC equip-
ment at natural frequencies above 25 cps.  This is considerably above
the normal useful frequency range of the REAC and has permitted
the successful completion of problems that otherwise would have
proved troublesome.

0.01 \a N, Y

E
G 0.005 NI
..E.I
32
<
)
0002 <3
0.001 .
0.02 0.05 0.1 0.2 20

Cy, pf
Fii. =13, Condenser nomograph for use with the circuit of Fig, 6-12.

6-6. Computer Instability. Occasionally problems arise that pro-
duce violent eleetronie amplifier instabilities when set up on an analog
computer. This is true even of problems that have stable mathemati-
cal representations. To be able to cope with all types of problems,

it i8 necessary that the computer operator be able to recognize prob-

lems that can cause electronie instability., Further, it is essential that
the operator understand the cause of computer instability when it
oceurs in a problem in order that he can modify the system equations
in such a manner as to permit a satisfactory computer solution of the
problem. The remainder of this section will be devoted to a discussion
of the nature of the instability induced in a computer and the form of
presentation of equations that can lead to an unstable computer setup,

A plot of amplifier gain and phase shift vs. frequency for a typical
high-gain d-¢ amplifier is shown in Fig. 6-14. For stability, the gain
of the amplifier must drop below unity at a frequency less than that
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which induces 180 phase shift in the amplifier. For a single amplifier
this condition is easily satisfied while designing the amplifier,

In Chap. 2, the transfer function of a high-gain d-¢ amplifier with
negative feedback was shown to be

€ _ _ % 1
e z 1 + 1/A(zp/2: + 1)
where z; and z; are the feedback and input impedances, respectively.
Examination of Eq. (6-46) reveals that for 4 >3 1 the ratio e,/e; is

influenced little by any change in amplifier gain. Therefore, when
summing amplifiers are arbitrarily connected in a series manner in a

(6-46)

+20} 100
Gain = ==
0 : \ 4 80
g -ED" n ﬁ'ﬂ _E'
= W
E =40 T m ﬂ
—eol- 100 &
Phase shift
-80 4 0
i 1 I L
1) 10 100 1,000 10,000
Frequency, cps

Fira. 6-14. Logarithmic plot of feedback amplifier characteristie.

closed-loop system, the phase shift is additive but the gain e,/e; is
relatively constant over a large range of A (and frequencies): there-
fore, no design eriterion can ensure that the stability conditions are
satisfied for all possible connections of the equipment.

If an even number of amplifiers are connected in a closed-loop
manner, the stability of the system is dependent solely upon the open-
loop gain of the system. The system is stable if the open-loop gain is
less than unity and is unstable if the open-loop gain is equal to or
greater than unity.

If amplifier phase shift is disregarded, a simplified analysis of an
odd number of summing amplifiers connected in a closed loop indi-
cates that the circuit is stable for all values of gain. Unfortunately
the simplified analysis is not valid. If the open-loop d-¢ gain in a
circuit is sufficiently great to provide a gain of unity at frequencies
producing a total phase shift of 180°, then instability will result. In
nctual practice it is found that instability will result at d-¢ open-loop
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gains only slightly greater than unity for closed-loop cireuits contain-
ing as few as three summing amplifiers in series. The resulting high-
frequency oscillation that occurs in the amplifiers of the loop is inde-
pendent of any forcing function or initial conditions applied to the
system. The noise present in the amplifiers ig sufficient to excite the
system if the conditions are such as to permit instability in the system.

The presence of an integrator in a closed-loop system effectively
eliminates the possibility of instabilities at loop gains normally used
in d-¢ analog computers. The integrator in the circuit serves as a
low-pass filter and, therefore, reduces the loop gain at high frequencies
sufficiently to prevent instahility from oceurring.

From the foregoing discussion, it is easily seen that violent amplifier
instability can arise if two or more summing amplifiers are connected
in a closed-loop path providing an integrator is not present in the path.
When a loop containing only summing amplifiers is present on a com-
puter, then the total gain and phase shift will determine the circuit
stability or instability.

Recognition of electronic instability in a problem setup is relatively
easy. The high-frequency oscillation that always results is independ-
ent of the position of the computer operate-reset control, as no inte-
grating amplifiers can be involved in the unstable circuitry. Whenever
amplifier oscillation occurs independent of the position of the operate-
reset control, it is probably due to the presence of a closed loop or
loops containing summing amplifiers only.

In the solution of differential equations on a computer, the only
condition that requires two or more summing amplifiers to be con-
nected in a closed-loop path is the presence of the highest-order deriva-
tive of two or more problem variables in each of two or more of the
equations representing the system. A system of equations that illus-
trates this condition is given in Eqs. (6-47) and (6-48):

d*x d* dx

F+alﬂ—f+a=——u.i—y+a¢-n (6-47)

d*y d*z i dx
o +bt£ b7 + b = 0 (6-48)

In the setup of this system of equations (Fig. 6-15) the highest-

order derivative of each equation must be formed explicitly at the

output of an amplifier, as the highest derivative of each variable is
necessary in forming the setup of the other equation. The feedback in
the amplifier loop i8 very apparent from the setup of the equations.
In this example, the system of equations is mathematically stable;
however, machine instability can still result. Batisfactory operation
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will result from low values of the parameters a, and b,, but high values
of @, and b, will surely result in unsatisfactory operation of the circuit.

The proper treatment of a system of this type requires that the
equations be algebraically manipulated to eliminate the highest-order
derivative from one of the equations of the system. For the system
under discussion, this can most easily be accomplished by substituting

Ejj ﬂ:ﬂ'zl}lllldf: \
aadx [di
BH—" 1 d2x di2 -
D—esdrtar || 19 . H IE —iln
aax _
O, 1/

bydixjdi2 "i\\
Sl
@_ﬁ}f‘i{_ i } Iﬂ'_'ll'.l'ldr: _dl_'l .l'd-l' +.}'

@ = bydx [t 1/
|[> “dy /di @

b
O——
Fra. 6-15. Betup of system having a closed loop including only summing amplifiers,

the value of d*y/di* obtained from the second equation for d*y/di* in
the first equation, giving the new equations

:::':. -—r-th( j:f—f‘fl:d ﬁag;;:—f'bm')

—I—ugd—m—u;j—f+uqﬂ:=ﬂ (6-49)

b G+ h W b, by =0 (6-50)

oe ﬁ:f—cld”+{:-,——cu+c'.z—u (6-51)
?+hlﬁ-+b,i~h.d—t+b¢=ﬂ (6-52)
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The setup of the latter equations no longer can produce electronic
instability, as the offending loop made up of summing amplifiers has
been broken (Fig. 6-16).

In actual practice, if the system of equations is composed of several
second-order equations, each containing all the highest-order deriva-
tives, the elimination of terms may require considerable labor. In
those cases, it is usually wise to proceed with the problem setup of
the original equations. Ocecasionally, the range of coefficients will be
such as to produce satisfactory results. If a high-frequency oscillation

=Cy dy/dt
+Cs dx/di

1

1
-Cﬂ 1
+Cax

dix/di*

clecle

+dxd

+by dix/di? ]

+bs dy /dt

= by dx/dt
+bay

@OE@@—

|:|—l|-l-lH

Fra. 6-16. Betup of system shown in Fig. 6-15 after the closed loop consisting of
summers only has been broken by algebraic manipulation of the system equations.

oceurs, it 18 sometimes possible that it will oecur in only a single loop. !

After eliminating the offending loop, all may be well. Often consider-
able time 1s saved by proceeding in this manner.

Fortunately, the most frequently used methods of deriving differ-
ential equations seldom permits the highest-order derivative of each
variable to oceur in more than one equation. The notable exception is
Lagrange’s equations.’ Very frequently the application of Lagrange's
equations in the derivation of a system of differential equations leads to
the inclusion of each of the highest-order derivatives in each equation
of the system of equations. This method of deriving differential equa-
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tions that are to be solved on an analog computer should, therefore, be
avoided whenever possible,

6-7. Concluding Remarks. Many of the cireuit diagrams demon-
strated in this chapter under the topic of Analytie-funetion Generation
have been in common use at analog-computer installations for some
time. It is very difficult in many cases to attempt to give eredit for
the origination of the individual circuits. The first comprehensive
tabulation of analytic functions that can be readily generated on ana-
log computers was made by The RAND Corporation.?

The circuits for generalized integration and approximate differenti-
ation given in Secs. 6-3 and 6-4 were first seen by the author in a letter
distributed by Reeves Instrument Corporation.

The eircuit deseribed herein for the single-amplifier representation
of a second-order system was described in a Boeing computer manual.?

PROBLEMS

For each of the Probs. 6-1 to 6-10, prepare a ecircnit diagram to generate the
function. In cach case perform any time-scale or amplitude-scale adjustments
that are necessary to permit the circuit to operate with the maximum magnitude
of the voltage at the output of each amplifier in the range 10 to 100 volts.

6-1. y = sin (50 + g)

6-2. y = 0501

8-3. y = eV gin 5i

G-4. o= 51 — 2e—0m)

6-6. g = 2 assume 0 < § < 10
G=8. g o= g

B=T. y =0+ {4 0.1 4 0.050

Do not use multipliers in setting up this function.

6-8. y = sinh 0.2¢ assume 0 < | < 10
6-9. y = In (i 4 2 assume < | << 1)
6-10. ¥ = cos (Eu: + E)

where y = y(l) and r = r(t). Assume that 10 dr/d¢ is available.

6-11. It is desired to use only one amplifier to solve, in real time, the transfer
function
. 1
' 0.0001p* 4 0.01p + 1

Determine the values of B, By, Ry, ), and € needed in the cireuit of Fig. 6-12 to
solve this equation,
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CHAPTER 7

THE REPRESENTATION OF NONLINEAR PHENOMENA

T-1. Introduction. In this chapter two new tools will be intro-
duced, the differential relay and the vacuum diode. Both are capable
of performing similar tasks of function generation, although in specific
applications superiority may lie with one or the other of the devices.

Commonly encountered nonlinear effects adequately representable
by the techniques to be presented include hysteresis, gear backlash,
dry friction, and displacement limiting. A complete tabulation of non-
linearities oceurring in nature would be very great in scope. Fortu-
nately most, if not all, of these functions may be reasonably well
represented on the analog computer,

T7-2. Differential Relays and Diodes—General. The differential
relays most useful with an analog computer must satisfy two main
requirements.  First, the relays must be capable of very high-speed
operation so that the switching time in a particular problem is negli-
gible as compared to the time delays in the problem. Relay switching
times of the order of 1 msec are satisfactory for most problems. A
second requirement is high sensitivity. A sensitivity such that the
relays switeh on an input voltage difference of 10 or 20 mv is adequate
for the majority of applications.

Satisfactory differential relay design and the early use of these
deviees in analog computation were pioneered independently by
Hughes Aircraft Corporation under the direction of R. R. Bennett!
and the Computation Section of the Flight Research Laboratory at
Wright Field, Ohio, under the direction of L. M. Warshawsky.? The
circuit designed at the Flight Research Laboratory consists of a high-
speed, sensitive, single-pole, double-throw, polarized relay driven by
u two-stage balanced d-¢ amplifier (see Fig. 7-1).

The two controlling voltages are applied directly to the grids ¢ and
(/' of the twin triode. If the input voltages are equal, each section
will earry half the total current. If an inequality exists, the plate
voltages of the two sections of the tube will vary correspondingly.

The action of the pentode in the cathode circuit of the input double
107
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triode is to cause the total current flow in the two sections to remain
approximately constant. Thus the device remains in balance regard-
less of the voltage level of the inputs, since the triodes always operate
on the same portions of their characteristic curves. Onee the ecireuit
i8 balanced for a particular set of tubes, little further adjustment need
be made to ensure its proper operation.

The plates of the twin triode are direct-coupled to the grids of two
pentodes. The two windings of a sensitive polarized relay form the

+300

Relay
—K
— i
—K
+ 100
M
3_ é 0.5 walt
1oM
oM
i0.5 watt
=140 _ - 350

Fra. 7-1. Differential relay amplifier circuit—schematic,

plate impedances of the pentodes.  An unbalanced voltage applied to

the grids @ and ' causes a greater unbalance to he present across the

relay windings and thus causes the relay to switch to the proper posi-
tion. A balancing potentiometer in the grid circuits of the pentodes is
provided to compensate for inequalities in tube characteristics,

Relays which have proved satisfactory for use with this circuit are

the British-made Carpenter relay, model 3J12, and the German-made
Siemens relay. More recently, American-made relays have been
developed that will fulfill the operating requirements of the ecircuit.

A diagrammatic representation of the differential relays that is
commonly used is shown in Fig. 7-2. In the figure, ¢ and ' repre-

THE REPRESENTATION OF NONLINEAR PHENOMENA 109

sent the grid inputs of the twin triode, K and K’ represent the two
contacts of the relay, and A is the relay arm. The arrangement is
such that if ¢ becomes more positive than ', the relay is caused to
switch, making contact between the arm and K. If ¢’ becomes more
positive than (7, the converse is true and the arm will close with
contact K'.

Diodes commonly used in computer ————G ok
imstallations are of the vacuum-tube - DR 1 °A
type. Crystal diodes are, in most ap- oK

plications, unsatisfactory because of Fie. 7-2. SBymbolic representa-
their finite back resistance. An exten- U°on of & differential relay.
sive discussion of the use of diodes in analog computers may be found
in a paper by C. D. Morrill and R. V. Baum? of Goodyear Aircraft
Corporation. A few of the more important circuits will be discussed
here,

T-3. Applications of Relays and Diodes to Simple Limiting. As an
introductory example, consider the case of simple limiting. It is

+100 desired to generate a function es,
: defined as
£3 —3 & < —a

£ —a <er<b (7-1)
li..l [ | :-"-ll

£
€1

o

Out 1, -¢ This can be accomplished using
the diode limiters supplied on
most of the commercially avail-

L———-u.————J

8

=100
Fra. 7-3. The series limiter cireuit pro-
vidled in the REAC computer. The
vircnitry  enclosed in dotted lines s
wired internally in the computer,

able computers. The basic lim-
iter cireuit provided in the REAC
computer 15 of the input-shunt
type and can be used as illus-
trated in Fig. 7-3. The portion
of the cireuit enclosed in dotted
lines is wired internally in the

REAC eomputer. The diodes have been drawn inverted in order that
the labeling of the 4 and — terminals will agree with their location on
the REAC patch board.

Recalling that the input impedance corresponding to a gain-4 input
of an amplifier is 0.25 megohm and that the grid of the amplifier is
effectively at zero, it is easy to visualize the operation of the circuit.
Huppose ¢, is in the linear region (that is, —a < ¢; < b); then neither
of the diodes can conduet, and the voltage appearing at the our termi-
nal of the limiter is —e,/4, The amplifier output —e; is then equal
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to —e;. If e, is less than —a, the plate of the diode associated with
the negative input is more positive than its cathode and the diode
conducts, holding the our terminal at —a/4 volts. The output —es,
therefore, remains at

— g == (1 B = —a

If the input ¢, is more positive than
b, the diode associated with the
€ positive limit conducts and the out-
put of the amplifier is clamped at
the voltage —b. The negative of
Fra. 7-4. Limiting achieved with the #ho demrf:d function has, therefore,
circuit of Fig. 7-3. The solid lines Deen achieved.
show the desired limiting. The dot- In actual operation, this circuit
ted l:'maal show the actual limiting Joes not give too good results, as
characteristics. the limiting is not sharp. Figure
7-4 shows the desired and actual limiting achieved with the circuit of
Fig.7-3. The actual limiting is shown in dotted lines and has a rounded
characteristic due to the contact potential® of the diodes.

A diode circuit that has sharper limiting characteristies than the
eircuit of Fig. 7-3 is shown in Fig. 7-5, where the diodes are utilized in
the amplifier feedback path. As
long as —a < ¢; < b, where —a and T
b are the desired lower and upper
limits, neither diode in Fig. 7-5 will
conduct, as the ecathodes remain
more pogitive than the correspond-
ing plates. If ¢, is made increas-
ingly positive, the voltage appear-
ing at the cathode of T, which isa
function of —e; and the potenti-
ometer setting, will eventually
become negative. At the time the
cathode of T'; becomes negative, T',
will commenee conducting and will
serve as a low-impedance feedback
path, reducing the gain of the amplifier until the output remains at the
desired voltage level. If the input e, becomes increasingly negative,
the plate of diode T'; eventually becomes positive, clamping the ampli-
fier output to the desired level. The simplest method of setting the
potentiometers involved in this limiting circuit is to adjust them by
trial and error, '

+100

]

—&

=100
Fra, 7-5. Output shunt limiting,
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The potentiometers required for this application must have both
ends available for external connection; therefore, coefficient potenti-
ometers that have one end permanently grounded cannot be used.
On a REAC the initial-condition potentiometers, if not needed to set
initial conditions on the integrators, may be conveniently used in this
application, since all their terminals are brought out to the patch
hoard. The diodes supplied in the REAC limiters may likewise be
utilized directly in this eircuit by ignoring the input terminal (see Fig-
7-3) and using only the terminals labeled 4, —, and ovr. The results
achieved using this circuitry again exhibit some lack of sharpness, but
for many purposes the circuit is entirely adequate. In general, the

ey = = [e,=a) for e; »a

T
- Im_@l 1 -,
1
1 . [
€, 1 -e,
1
1 it
1
o021
1 T

€2 = —le,+b] for e;<—b
fa) i)
Fig. 7-6. An fdealized-diode limiter cireuit. (a) Circuit diagram; (b) output,

utilization of diodes in amplifier feedback paths produces sharper
results than does input shunt limiting.

It iz possible to prepare circuit diagrams employing so-called ideal-
ized diodes, or cireuits giving an output response that does not exhibit
the effect of diode contact potential. The circuit of Fig. 7-6 illus-
trates an idealized-diode circuit having the same limiting character-
istic as the previous circuits. Here ¢ and —e¢, are the input and out-
put voltages respectively. The limiting provided by this circuit is
exceedingly sharp.

The operation of the cirenit of Fig. 7-6 iz easily understood as soon
us the operation of the so-called idealized-diode circuit is understood.
Consider only the circuitry associated with the upper high-gain ampli-
fier of Fig. 7-6a. If & is negative, diode T's will conduct and T, will
remain eut off. The voltage at point e, will be very close to zero,
since the grid of the amplifier always remains close to zero. At the
time that the potential of the input & becomes slightly greater than

il
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+a, the diode T': will cease conducting and T, will commence con-
ducting. The voltage at e, is thus —(e; — a) for &; > a. The result-
ing output of amplifier 8, due to the voltages ¢; and ¢, is —e¢, for
e; < aand is —a for e; > a.

It will help the reader to visualize the operation of the circuit if he
considers the diode T'; to be a portion of the high-gain amplifier. This
coneept is satisfactory, since the presence of the diode in its conducting
state affects the over-all gain of the high-gain amplifier only slightly.

+100
& b ﬂ:
- K
+limit | DR1 | A
O |
+100
| oK
~ limit g, DR 2 od—e,
@ K
-100 -
=100
la) ib)

Fra. 7-7. Differential relay limiter cireuit,  {a) Cireuit; (b) output.

The feedback around the amplifier is then the path from the point
labeled ¢; through the l-megohm resistor indicated as a gain-1 input
of the high-gain amplifier. During the period of conduction of T,
the voltage e; is thus the output of a summing amplifier with the

inputs —a and e..

The operation of the lower high-gain amplifier cireuit is similar. If
¢ > —b, then Ty cannot conduect and e; remains at zero potential. If
¢; becomes more negative than —b, then Ty conduets, causing the volt-

age e¢: to be — (e + b).

The use of idealized-diode circuitry normally requires more equip=
ment than the simpler diode limiters, This is not true in all cases,
however, as will be illustrated in an absolute-value circuit to be

deseribed later in this chapter.

Differential relays may be utilized to perform the same type of
limiting as performed by the previous circuits of this section. The

circuit of Fig, 7-7 is commonly used in this application.

In the region where —a < ¢; < b, the relay associated with DR 1
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15 switched to the K' position and DR 2 is closed to the K position,
as indieated in the diagram. The output e; is, therefore, equal to e,.
If ¢ becomes more positive than the positive limit b, DR 1 will close
to the K position and es will be equal to b,  If ¢; becomes more nega-
tive than —a, DR 2 closes to K' position, and e, is equal to —a. It is
obwvious that the limiting will be perfect except for the transient occur-
ring during the switching. Since the relays have a switching time of
the order of 1 msee, the transient is negligible for most applications,

+1
i
= flx)
1.
. 0.75 M ‘\ o —
o | ATAY 18— +fix) -
=3
=100
[) (b

Fia, V-8. Dry-friction simulator using diodes. (a) Circuit; (b) output.

[t may be well to point out again that three conditions are satisfied
in generating this simple limiting funetion defined by es; that is,

E:=b !‘.1}[-'
ey = & —a < ep < b (7-2)
2 = —a £, < —a

T'wo relays are needed in the generation of the function. In general,
n — 1 double-throw, single-pole relays are required to generate a par-
ticular funection, where n is the number of conditions which must be
untisfied. When designing a relay circuit to perform a nonlinear oper-
ation, either parallel or series connection of the relay outputs can
usually be used. The reader will find that a series connection, as used
nhove, will normally lead to a eircuit requiring the minimum amount
of equipment.

7-4. Other Diode and Relay Circuits. Dry friction is another

_physical phenomenon which must occasionally be simulated on an ana-
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log computer. In equation form, dry friction can be represented as

flr) = a %{l}

f(z) = —a %}ﬂ

(7-3)

A shunt limiter may well be used for this application (see Fig. 7-8).
If dx/dt becomes only slightly positive, the output of the high-gain
amplifier is a very large negative voltage. Conversely, if the input
dz/dt is slightly negative, the high-gain amplifier will produce a very
large positive output. Either Ty or T, will econduct, depending upon

whether the output of the high-gain amplifier is positive or negative.
Only if the input is identically zero or

-1pe differs only negligibly from zero will -
1 the high-gain amplifier operate in the
-a linear region. The amplifier goes

Ko almost immediately from its maxi-
bRl #_“_‘ﬂﬂ mum negative output toits maximum
positive output, and therefore, sinee
@ the eurrent drawn from the diodes is

R
)

iy

a constant for most of the range of

+100 operation, the eircuit will give very

Fia. T:H._Rnlu;; circuit for simulating  sharp limiting.
dry friction. In this eireuit when using ampli
fiers with an automatic-balance system, such as are used on the REAC
and the 1-3 model GEDA, the automatic-balance system must b
disabled, as the amplifier operates at saturation much of the time. The
long-time constant associated with the au tomatic-balance system would
otherwise prohibit satisfactory operation.
The simulation of dry friction using differential relays may be
accomplished as in Fig. 7-9. In the cireuit of Fig. 7-9, if dx/dt in
positive, f(z) = —a. If dr/dt is negative, f(z) = a. The only error
present in the system is in the vicinity of dz/dt = 0; here f(z) will be
zero over & small region. If the speed of the relays and sensitivity of
the differential amplifier are high, the operation will be satisfactory,
Dead Space. Another nonlinear effect that frequently must be
represented on a computer is dead space. Mathematically, this may

be represented as |

flz) =0 -0 <z<C
f@)=(x-C =>C
f@) =@+C =2<-C
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( :.Imphmall_v, dead space is represented by the solid line of Fig. 7-10b
Iigure 7-10a ia‘n. cireuit eapable of generating this funection. . .

The hr-.::ke:_l lines on the graph of f(z) vs. z represent the actual out-
put of this circuit; the solid lines, the ideal output. It is necessary
in the use of the circuit, to compensate for this imperfection. A mucl;
more satisfactory diode cirenit for the simulation of dead space is given

+100
flx)
L Actual
. . » output
-C 1'.'.' x
II|Il_.-"
=100

1 la) (B

Fia, T-10. Diode circuit for the simulation of dead space. (a) Circuit: (b) output
ey =0, ~[e-C)
- lm_®_'§_ 11 &
1
1
T 1
x M=)
1
Ty
1
+100— : II——+E 1
! T
ez=0, - (x+C)

F1a. 7-11. Excellent diode circuit for dead-space simulation.

in Fig. 7-11. It can be seen that this circuit i i
ru?rmngﬂment. of the eircuit of Fig.t':-’liﬁ.mnmt @ formed by & simple
I'he operation of the cireuit can be analyzed by considering onl
one-half the Fircuit at a time. It is apparent that 7', will cnnduc{
only when x is more positive than €. During the time T, conducts
the voltage at ¢; is —(z — (') and at the same time es = 0. Wher:
¢ < C, T, cannot conduct and ¢, = 0. During the time the input
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potential is in the region —C < z < C, neither T'; nor Ty conducts and
the output remains at zero potential. When r falls below the potential
=, the output of the lower high-gain amplifier becomes positive and
€2 becomes —(r + C). The operation is, therefore, as described by
Eqs. (7-4),

A relay circuit for the simulation of dead space is given in Fig.
7-12,  Binece the cireuit is glightly more complex than those previously
attempted with relays, it may again be beneficial to analyze the oper=
ation in detail. If — ¢ < ¢ < ', DR 1 and DR 2 will be switched as

+100

+C
fix]

- 100
la) ib)
Fia. 7-12. Relay dead-space simulator.

shown in the diagram. The quantities feeding amplifier 8 are =z
and —z, so that f(z) is zero. Ifr > C, DR 1 will close to the K posi-
tionand f(z) =2 — ¢, Ifz < —C, DR 2 will close to the K' termi-
nal and consequently the output will be f(x) = =z + €. The prescribed
function is thus satisfied identically by the above circuit. Tt should
be apparent to the reader that the dead space need not be symmetrical
about r = 0 as in this example.

Backlash. Gears, involved so frequently in mechanical systems, are
subject to backlash unless extreme care is taken in the design and
assembly of the gear trains. The use of spring-loaded antibacklash
gears in devices such as the mechanical differential analyzer, or in
high-precision servomultiplying equipment for an electronic analog
computer, is almost mandatory to prevent the backlash from affecting
the operation of the mechanism. In most applications, however, the
requirements of mass production completely preclude the possibility
of using precision gearing. In some gear applications the effects of
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backlash are unimportant, but in other instances its presence can com-
pletely change the dynamic reponse of the system. The analog-
computer design phase of a system study must, in many instances,
include an investigation of the effects of backlash in order to provide
tolerances to allow the economical construction of the system. Back-
lash, as present in gear trains, is illustrated in Fig. 7-13. In this dia-
kram f; represents the position of the driving gear and s is the position
of the driven gear. Correspondingly, A# is the hacklash present in
the gears. A diode cireuit for

producing this funection is given 2
in Fig. 7-14a.

The potentiometers associated
with Ty and T: in Fig. 7-14a are
adjusted to allow T or T to con-
duet as the output of summer 8
reaches —A8/2 or A8/2, respee-
tively. If @, starts from the
zero reference point and inereases
positively, neither diode will con-
duet until 8, — 8 = A6/2. At
that instant T will begin con-
ducting and integrator 1 will commence integrating. The junction of
the triodes is taken directly to the grid input of the integrator, so that
the input impedance of the integrator is very small. The integrator
time constant is correspondingly very small, and the integrator output
fly rises almost instantaneously to the voltage representing 8, — A#/2,
The output of integrator 1, therefore, follows the input, lagging it a
(quantity A8/2. If 8, reverses its direction of travel, neither T, nor T,
will conduet and the output level of integrator 1 will remain essentially
constant until such time as

/

Fia., 7-13, Backlash,

ﬁl = H; — ‘;—E
At that instant 7. will begin conducting and again the output #,
follows 8y, lagging a quantity Ag/2.

The circuit shown in Fig. 7-14a operates best when the nput 8,
varies in such a manner that the output #; does not remain in the
backlash region very long at a time. The output of integrator 1 tends
to drift slightly rather than hold a constant value, and this may cause
the operation of the circuit to be unsatisfactory in some applications,

A relay circuit capable of simulating backlash can be constructed
that operates best under the conditions that give the poorest oper-
ation of the diode circuit. The first step in preparing the relay cir-
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&

1]

Fia. 7-14. Backlash simulators. (a) Circuit using diodes. The output #8; will
drift slightly in the backlash region. (b) Cireuit using differential relays. This
circuit operates best for a slowly varying input voltage.

euit for the generation of any funetion is to state the conditions that
must be satisfied by the function. Backlash must satisiy the follow-
ing conditions:

1. If 8, increases,

0 < 02 + %q ’
2. If #, decreases,
Al
By > 0y — 5

a.lta,—%*qa.{h+“—2‘1

s = constant
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Since three conditions must be satisfied, the relay circuit requires
at least two single-pole double-throw relays. It is apparent from the
stated conditions that these relays must distinguish the conditions
Ag Al

3 H-T'IE] ﬂl{ﬂ:—‘i

If §; becomes greater than #; + A8/2, then #; must increase until the
inequality is no longer satisfied. If 8, becomes less than #; — A8/2,
fi; must decrease until the inequality is no longer satisfied. These
conditions lead the computer operator to the configuration shown in
Iig. 7-14b.

This circuit has certain limitations in its usefulness. The relays
DR 1 and DR 2 have a finite switching time, so that the output of

> 8: +

o

— \/

5 €
€

(a) (&)

Fia. 7-15. Diode absolute-value cireuit.  (a) Cireuit; (b)) output.
integrator 1 (—#2) changes in incremental steps. In order to prevent
an excessive overshoot of the output voltage, it is necessary to restriet
the rate of change of #: to a value that will give the relays time to
open before an excessive error is made. An integrating rate of 100
volts/sec, when using relays having a switching time of 1 msee, there-
fore produces a maximum overshoot of 0.1 volt. If the integrating
rate is reduced, the overshoot is reduced proportionately.

The integrating rate of the amplifier producing — #; limits the rate
of change of the input #, that the circuit can be expected to follow.
For slowly varying input signals, the circuit operation is excellent.
The cireuit will cause #s to remain constant over long periods of time
if the problem input remains in the backlash region.

An approximate representation of magnetic hysteresis may be
achieved by a simple modification of the circuit in Fig. 7-14a. If
magnitude limiting is applied to the output of integrator 1, the result-
ing output has the form shown in dotted lines in Fig. 7-13.

Absolute Value, Either diodes or relays can be used to form the
abeolute value of a quantity. The generation of this function can be
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very economically accomplished using idealized-diode techniques. A
circuit for the absolute value is given in Fig. 7-15.

The operation of the circuit in Fig. 7-15 is quite simple. Point ¢, i8
zero when e; is positive. Correspondingly, e, is equal to —e when
€ is negative. Since the voltage ¢, is multiplied by a factor of 2 and
added to ¢ at the input of the
summing amplifier, the output is
pr1 | Ao——e, equal to —(2e; + &) or

Es = & e =0
By = — & e < 0

H
0 &
=

(7-5)

A circuit using differential relays
may also be used to form the ab-
solute value of a quantity. Both
Fia. 7-16. Relay absolute-value cir-  the relay and diode methods give
ouit. excellent results, The circuit for
forming the absolute value, using relays, is given in Fig. 7-16.

T-5. Limiting the Output of an Integrator. Very often limiting of
the output of an integrator is necessary in the proper application of an
analog computer. A typical example wherein an integrator output
must be limited is the simulation of guided-missile control surface that
reaches a limit stop. A second eommon
example is the piston of a hydraulic actu-
ator reaching the end of its eylinder. j

Superficial examination of this limiting ct
problem leads the computer operator to
the conclusion that the requirements are
very simply satisfied, Unfortunately this Flﬂl
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is not the ease, and the problem requires

much deeper consideration. The proper M

analysis of this type of limiting will be

demonstrated by the consideration of the ¥ e,

simple mechanical system illustrated in  Fro. 7-17. Simple mechanical

Fig. 7-17 aystem with displacement lim-
1g- iting.

The system consists of a simple mass,
spring, and viscous damper driven by a forcing function

F(t) = bsin wl (7-6)

Inelastic limit stops are provided to restrain the movement of the
mass to a region —a < z < a. To illustrate the pitfall that may be
readily encountered in the setup of this problem, the simple but
incorrect setup will be demonstrated. The equation of motion of the
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system 1s
d*x , dx g
M pTE + C i + Kr = b sin wyl (7-7)
with the restriction —a < z < a at all times. The equation is first
divided by M, giving

dx Cder | K b .

diE + WA + i = i BN wil (7-8)

The circuit diagram, neglecting seale factor, is represented in Fig, 7-18,
The output of amplifier 8 is properly restricted to remain in the

region —a < x < a, but the circuit does nof represent the physical

_C ds
O—==
] —
-K
> M x
biM sin wqt
From sine generator a
'y
x* = unlimited displacement
=100

Fia. 7=18. I'ncorrect cireuit dingram for limiting the output of an integrator,

problem, as will be presently shown. Assume that the system is
placed in operation, and further assume that the foreing function is
of such magnitude that x always operates in the linear region. In
this case the cireuit will operate satisfactorily, since the diodes are
always cut off. If b, the coeflicient of the forcing funetion, 1s inereased
until the mass reaches its limit stops, the operation of the cireuit is
no longer satisfactory.

Suppose r increases until finally it reaches the limit stop. At that
time the output of amplifier 8 will be correct, but if de/dl is still posi-
tive, the unlimited output of integrator 2 will continue to increase,
At the time dz/d! becomes negative, x should commence decreasing in
magnitude as in the physical system. This is impossible, though, as
x* is greater than the limit value of r and dz/di must remain negative
an appreciable time before 2* will again fall below the limit value of z
and allow the output of amplifier 8 to decrease. It is apparent from
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this analysis that the circuit introduces a time lag in the problem that
completely changes the nature of the solution.

A correct setup of the system will now be undertaken. Of utmost
importance in the setup of this problem is the recognition of the fact
that the differential equation.of motion applies only during the period
of linear operation of the system. During the time that the mass is
motionless against either limit stop, the differential equation of motion
does not apply. Instead, a static-force equation is satisfied by the
physical system. The complete system equations can be expressed as

§;§+%i—'r+%:=%sinm.! - < r < a (7-9)
F,=— f—{m + %B’ln wyl T = ta (7-10)

where F, = force on the stop.

In other words, the force equation simply expresses the condition
that the force on the stop is the algebraic sum of the spring force,
attempting to restore the system to the neutral position, and the
forcing function holding the system against the stop. During the
time b/M sin w,¢ > Kz/M, the mass will remain motionless and dx/d¢
will be zero. As soon as b/M sin wy/ becomes less than Kz/M, the
mass leaves the limit stop and the system again operates as described
by the differential equation of motion. It is important to note that,
while the mass is motionless against a limit stop, the form of the exp
gions for di*z/dt* and F, are identical, since dx/d! is zero in the differ-

ential equation. The force equation and the equation of motion can,

therefore, be represented by the same circuit.

Instead of operating on z, it is possible to force dz/dt to zero and
thus cause x to remain at the limit value. A relay circuit for properly
controlling dxz/df is given in Fig. 7-19. The operation of the circuit
may be analyzed as follows: If —a < x < a, the relays DR 1 and
DR 2 will be positioned as indicated in the diagram. The feedback
around integrator 1 is broken, and the eircuit will operate in the linear
region. If x becomes slightly more positive than the upper limit a,
DR 1 will switch, closing to K. In order for z to increase, dr/df must
he positive; consequently, since the output of integrator 1 is negative,
diode T'; will conduet, forming a low-impedance feedback path around
the integrator and forcing the output of the integrator essentially to
zero. The output of integrator 2 remains approximately constant,
and the physical-system behavior has been approximated to this point.

As soon as the restoring force, due to the spring, exceeds the foree
holding the mass against the limit stop, the input to integrator 1

P L Bl
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changes sign and dr/dt becomes negative. The diode T'; ceases con-
duecting, and immediately x falls below the limit value, allowing DR 1
to return to its original state. As x becomes increasingly negative,
DR 2 switches to the K' position when the negative limit is reached.
At this time dz/dt is negative, and thus, since the output of integrator
| is positive, T': will eonduct, reducing the output of integrator 1
to approximately zero. The mechanics of operation of the remainder
of the cycle is similar to that described for the positive limit. As may

".HI‘H X - "y —
: . L 2 =2
From sine bIM sin 1 o1 2
generator '

- limit| o, OR2 | L—oy
Q L

Fia. 7-19. A relay cireuit for properly limiting the output of an integrator,

be seen from the foregoing discussion, the only purpose of the diodes
Ty and T is to allow the cireuit to back off from the limit position.

In this circuit it is important that the output of integrator 1 feed
to a gain 1 or lower gain of the following integrator. This is impor-
tant because the output of integrator 1 is not driven to identically zero
but to a small finite value. Integrator 2, therefore, drifts slightly
nbove its limit value a. If gains greater than unity are used, the drift
will be increased by the magnitude of the gain used. Gains other
than unity may be applied at other points in the circuit with less
detrimental effect on the operation. This eireuit, although subject to
some imperfections, produces a very satisfactory representation of dis-
placement limiting in most applications.

7-6. Representation of a Unit Impulse. The analytic analysis of
many systems is facilitated by the use of the unit impulse. Similarly,
the unit impulse is oceasionally useful in the solution of problems on an
nnalog computer. In the past, many engineers have been “stopped "
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by the apparent difficulty of representing this function on an analog
computer. This should not be the case, however, as this function is
really quite simple to simulate.

The unit impulse u,(t) is defined as the limit of a rectangular pulse of
unit area where the limit is taken as the width of the pulse approaches
zero. This may be expressed mathematically in Laplace transform

notation as

wy(0) = Tim u(f) — u(t — a) (7-11)
=+ ) a
The geometrical interpretation is shown in Fig. 7-20. This limit
process defines u,(f) in the limit as a rectangular pulse of infinite
height and zero width.
There are two ways in which a unit-
impulse function may enter into a com-

1 puter problem. The unit impulse can

1 . . p
o _Area=1 he used as a foreing function that is
ol applied only at ¢t = 0, or it ean be used

-— as a repetitive disturbance oceurring

periodically throughout the solution of
the problem. A physical example of a

“ problem of the latter type is the study of

;::n?{.-.tizﬁt “Pm unit dmpulse g dynamics of a rapid-fire cannon or
machine gun.

The basic approach to the simulation of the two types of unit impulse
funetions mentioned is quite different. The unit impulse oceurring at
t = 0 can be treated analytically by means of the Laplace transform,
whereas a repetitive impulse must be generated by nonlinear function-

generation techniques.
In this section only the unit impulse occurring at ¢ = 0 will be

considered. The repetitive impulse will be demonstrated in See. 7-T,
The analysis to be used here is to show that the Laplace transform
of the unit impulse is completely analogous to a veloeity initial con=
dition in a second-order system.

Consider the differential equation

|
ijf + a :‘%t + bz = wy(l) (7-12)

where wu,(f) is the unit-impulse function. The Laplace transform of
Eq. (7-12) 18

ml.s’:f{a} — 2(0)s - % {m] + alsX(s) — 2(0)] + bX() = 1 (7-18)
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If, in Eq. (7-12), the initial value of dx/df and x are defined as zero,
Feg. (7V-13) becomes

ms*X(s) 4+ asX(s) + bX(s) = 1 (7-14)

Consider now the case of the homogeneous equation, u,(f) = 0, with
initial conditions

dr 1 .
E{ﬂ} = ﬁ .'l'l:ﬂ} = [)

F'or these conditions Eq. (7-13) becomes

ms*X(s) — 1 + asX(s) + bX(s) = 0
o ms*X(s) + asX(s) + bX(s) = 1 (7-15)

Comparison of Eqs. (7-14) and (7-15) reveals that they are identical.
Sinee the transform of the second-order system with a unit impulse
applied as a foreing funetion is identically equal to the transform of
the same equation with an initial condition on velocity, it is readily
apparent that an initial condition on velocity can be used on an ana-
log computer to represent the unit impulse,

A word of caution should be entered here regarding the effect of a
time-scale change when representing the unit impulse in this manner.
The equation should be changed to a differential equation with the
eiquivalent initial condition stated before applying the time-scale
change. Less frequent errors will result from this procedure.

An alternate method of representing the unit impulse that has fre-
quently been used is to approximate it with an exponential function.
The funetion most commonly used is

) = ae™ (7-16)

In order to obtain an adequate representation of the unit-impulse
function, two requirements must be satisfied: (1) the duration of the
impulse must be short compared to the time constants of the problem
im which it is to be used; and (2) the area under the function must be
unmty.

Integrating Eq. (7-16) shows that the funetion ean satisfy the
requirements placed upon the unit-impulse funection, since performing
the integration gives

f“'m}m - j;" ae—et df = 1

IT o is made arbitrarily large, the function f({) becomes arbitrarily
short in duration, but the area or integral of the function remains unity.
Since the unit-impulse function is normally applied as a forcing
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function, it is usually applied to the input of an integrator as one of
the terms which, when added together, are equivalent to the highest-
order derivative of the equation being solved. As will be shown in
detail in Bee. 10-5, the inputs to an integrator are disconnected from
the integrator during the time that the computer controls are in the
RESET position. The actual voltage applied to the integrator input is
thus zero until the computer controls are placed in the oPERATE posi=
tion. Although the initial value of f{f) in Eq. (7-16) i8 «, the inte
grator sees it a8 a sudden jump from zero to a volts at ¢ = 0 and then
as an exponential decay to zero with a time constant 1/e.

The first method presented for representing a unit impulse function
is certainly the preferred method, since it requires no equipment ang
represents the desired function exactly, The exponential method o
generating the unit-impulse function was described here as a compari
son of existing techniques.

7-7. The Repetitive Unit Impulse. In the preceding section t
methods were presented for representing a unit-impulse function
applied at { = 0. In this section a means of approximating a repet
tive foreing function in the form of a unit impulse will be discussec
The definition of the unit impulse is important here, as it leads to
justification of the techniques to follow.

The limit process of Eq. (7-16) defined u,(f) as a rectangular pulse @
infinite height and zero width. Obviously, this cannot be represente
exactly on the computer, but a good approximation can be made b
generating rectangular pulses of unity area and increasing the heigh
and decreasing the width until no change in the system response
observed.

Differential relays provide a particularly easy means of generatir
just such a function. The necessary cireuitry includes a sinusoid ger
erator to establish the periodicity of the function, and relays to
a voltage on and off. Such a circuit is shown in Fig. 7-21. In th
region where —b/2 < cos wi < b/2, the differential relays are posis
tioned so that the output iz 1/a. The duration of the pulse a is
function of the setting of potentiometers 3 and 4. As the settings ¢
potentiometers 3 and 4 are decreased, the pulse becomes narrower
and as potentiometer 5 is increased, the pulse becomes greater
magnitude. Since it is very difficult to measure the exact width o
the narrow pulses, the output of the cireuit should be checked by
integration, When properly adjusted, each pulse should add unit;
to the output of an integrator used in the check. '

In actual use, it is usually found that the pulse width can rem
quite appreciable and still give satisfactory computer results,

Rl e e A i —— = Sl

THE REPRESENTATION OF NONLINEAR PHENOMENA 127

limiting pulse width for satisfactory operation can easily be determined
by increasing the pulse width slightly (keeping the area unity). If no
significant change in the system response is observed, the represen-
tation is adequate.

The illustrative problem of Chap. 3, involving the automobile sus-
pension system, employed the same method of generating a foreing
function as is employed here. The only difference is that in the previ-
ous example the pulse width and height were assigned arbitrary values
rather than a pulse area of unity as required for the unit impulse.

Initial condition =1

O—e ok

Fia. 7-21. Repetitive impulse generator.

T-8. Approximation of a True Time Lag. The =etup of problems
on computers occasionally requires the representation of a “true time
lng,”" or an expression of the form f(f — 7). The brute-force approach
to the solution of this problem, and one that has been used in the past,
i# to generate f(f) in the computer and plot f(f) vs. { on a specially
equipped recording device. The special equipment necessary is a
reticle, coupled to a function-generating device such as a potenti-
ometer, that ean be manually positioned to f{t) at some fixed time
interval r after f(f) is generated and plotted. This scheme has proved
to be workable for some problems, but it has several limitations and dis-
ndvantages. First, this method of generating a true time lag requires
manual tracking of the function f{t — r) and thus introduces human
error into the problem. Second, and most important, there is an upper
and lower limit to the magnitude of the time lag that can be intro-
duced into a function by this means, These limits are imposed by the
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physical design of the manual tracking device. Third, the necessity
of using manual tracking places a severe limit upon the speed of solu-
tion of the problem involved.

A better scheme of producing a true time lag has been devised.®
This scheme is based upon the mathematical approximation to the
Laplacian shift operator ¢ and allows a good representation of the
true time lag for value of r even as great as a minute or longer, if
NeceEssary.

The Laplace transform of f{(t — r) is

Lt — 7)] = F(s)e (7-17)

if fit —7) = 0for 0 <t — 7. InEq.(7-17), e is commonly called
the Laplace shift operator. The problem of generating a function
fit = ) can therefore be reduced to the problem of generating the

function .
The best known approximation to the funetion e* is the Taylor series

expansion

:-rl
2T = — 7-18
This expansion is convergent for all values of z, but unfortunately the
rate of convergence is small for = large. For this reason the Taylor
series is not well suited to the generation of a fixed time lag for prob-

lems involving high frequencies or for long time constants. This can

be seen by replacing & by jw in the expression for e,

An approximation of e that is superior to the Taylor series expan-

sion for the generation of a true time lag is the Padé® approximation

i 13
where
Fuslz) =1+ T _f_xuj]f tTa+ E;:utu_+lllt— 1)2!
o tu+u:|t5:v”— I - 2'-1f=:+ o (720
Guulz) =1 = (v .r:u  + v+ :}‘Eﬂ;ﬂ-‘i 1)2!
R O u}{ﬂu+_un+ 5 e om 02

The convergence for this series expansion is quite rapid, and of
values of u and v of 2 will give good accuracy for short time lags an
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low frequencies. The Padé approximation of e for u =90 =2 is
given in Eq. (7-23).

1 — 2/4(s7) + 2/41(s*%)

S T 2 () + 2/41(s%) (7-22)
__ atr? — Gar + 12 N
T e + 12 (7-23)

In terms’of the original problem, generating f(! — =) when f(f) is
known, the equation for the second-order Padé approximation can be
cxpressed in transfer-function notation as

ft — ) . p*r* — Gpr + 12

ity T prt 4 bpr 4+ 12

(7-24)

The justification of the validity of Eq. (7-24) is easily demonstrated
as follows:

£f(t — v) = F(s) e (7=25)

efit — 1) = 2f(t) e (7-26)

Substituting Eq. (7-23) into Eq. (7-26) gives

Lfit — 7)  #%" — Gsr + 12
CEf() T s 4 Ger + 12 (7-27)

lewriting Eq. (7-27) gives
(8% 4 Gsr + 12)2f(t — 1) = (8% — Ber + 12)27(1) (7-28)
Merforming the inverse Laplace transformation upon Eq. (7-28) gives
(p** + 6pr + 12)f(t — v) = (p*r* — 6pr + 12)f() (7-29)

Comparison of Eqs. (7-29) and (7-27) reveals that the equations are
identical. This is, of course, a logical conclusion, as the Laplacian
operator and the differential operator may be used interchangeably
providing the initial conditions in a system are identically zero. This
14 true in the system described above.

In setting up the transfer function of Eq. (7-24) for computer solu-
tion, the technique presented in See, 4-3 is most useful. Proceeding
ns in Sec. 4-3 by dividing the numerator and denominator of Eq. (7-24)
by p*r? gives

fit =) _ 1 —6/pr 4+ 12/p**

fly  — 14 6/pr + 12/p% (7-30)

Holving the equation for f(i — r) and collecting terms according to
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ﬂ%mium -rl] [— il,,zl—rflﬂﬂ ~fit=ri]

Fia. 7-22. Circuit
true time lag.

Phase shift, deg
[
a

g

400

FiG. 7-23. Phase characteristies of the second-order Padé approximation to 7,

powers of p gives

fit — ) = ft)

The setup of the second-order approximation to a true time lag
easily be prepared from this equation and is shown in Fig. 7-22.
The range of frequencies and time lags for which the second

approximation

for the generation of the second-order Padé approximation of

Frequency, radians /sec
4 [ 8 10

- ma

Second-order Padé
approximation

- "

~[8r0 + 85 -]

| [E 5O — 3t - r:r] 2 1

to e~ is useful is shown in Fig. 7-23 as a plot of
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phase shift in degrees vs. the frequency in radians per second. In
order to use this chart it is necessary to substitute jw for s in the
expression for e~ and use for « the highest value of the frequency that
will be encountered in a particular problem.

The fourth-order Padé approximation to ™" is

(8r)* — 20(s7)* + 180(sr)* — 840sr 4 1,680 (7-32)

€ = )T F 20(sr)" + 180(s7)® + S40sr + 1,680

The setup of the fourth-order Padé approximation to a true time lag
can be made in a manner analogous to that for the second-order Padé

Fra. 7-24. Cireuit for the generation of the fourth-order Padé approximation of a
true time lag.

approximation. The setup for the fourth-order Padé approximation
is shown in Fig. 7-24. Secale-factor adjustment for particular values
of v has been left to the reader.

The plot of the frequeney vs. phase shift for Padé approximations
to e~ using values of v = v = 2, 4, and 6 is shown as Fig. 7-25.

The fidelity of representation of the second- and fourth-order
approximations to e~ is quite good. A plot of frequency vs. phase
shift for the sixth-order approximation reveals that the approximation
deviates quite considerably from the desired values (see Fig. 7-25).
This fact led Morrill* to suggest that a better method of extending
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the accuracy of the approximation beyond that obtainable from the
fourth-order approximation is to devise a ‘““mop-up” equalizer net-
work to be applied to the results of the fourth approximation. The
method of designing a ** mop-up”’ equalizer, as suggested by Morrill, is:

1. Plot the phase-shift characteristics of the fourth-order Padé
approximation to e,

Frequency, radians /sec
0 2 4 6 8 10 12 14 16

u=v=4

Ty
Ideal characteristic o N .
m B * L

g=p=h

"

Fia. 7-25. Phase characteristics for Padé approximations to e,

2, Plot an error curve determined by the difference between the
above curve and the desired straight-line function.

3. Determine the network having a phase characteristic which most
nearly follows the error curve.

PROELEMS

T-1. There are usually several ways that particular functions can be generated
on an analog computer. Show that the circuit of Fig. P 7-1 is an additional
method of generating the absolute value of a funetion.

+100 4100
€ Servo ‘.
-100  +100
Fia. P 7-1
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T-2. An aireraft landing-gear strut has a dump valve mounted in its oil passage
so that when the aireraft is moving downward (compressing the strut) the damping
foree ¢ is

"' -.rl (I;{E

When the motion is in the opposite direction the dump valve opens, reducing the
damping force to

i-.f:(:.:—:

Assume that fi(x, dz/dt), fs(z, dz/df), z, and dz/di are available in another portion
of the circuit. Assume that dz/di is positive when the aireraft is moving down-
ward. Bhow a circuit diagram to produce ¢,

T-8. It is necessary to generate a particular foreing funetion §, where & is defined
it}

i=a |
§ = ag[l — et = £)] by << < Iy
b =5b Iy <1 <l
b= fiz, I) h <t

The forcing function is illustrated graphically in Fig. P 7-3. Bhow a circuit to
generate this function. Do not use in excess of three differential relays and two
integratorg in the circuit.

#_\
50 - :

Fia. P 7-3

T-4. A relay cireuit to simulate veloeity limiting and displacement limiting in
the output of & servomechanism is shown in Fig. P 7-4.  The equation simulated is

i

%+aj—f+h=m}

with the limits

—E £ F g —d{d—:{:
i

Describe in detail the operation of that portion of the eireuit producing the velocity
limiting.
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FI—G H_
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Fio. P 7-4
T-6. Describe the operation of the diode circuit of Fig. P 7-5 and plot e, vs. &

for the circuit.

A

R,
R,
&AM

Ry

ATATAY . 2

Fia. P 7-5

7-8. It is desired to simulate a regulator which controls the speed according to

whichever of two controlled variables is the smaller. Draw a diode eireuit to per-
form the selection

&y = & £ < £3
1 = fiy Br <y

Hixr: Connect diodes, properly oriented, from the output of amplifiers generating
evand e; to a junction that is supplied a positive voltage through a dropping resistor.

7-7. Bhow a computer circuit diagram to solve the equation

diz dx
Eﬁm+lﬂﬁ+lﬁ:¢-m{t}

where u,(f) is defined as the unit-impulse function.
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CHAPTER B

MULTIPLIERS AND FUNCTION GENERATORS

8-1. Introduction. During the period of time that has elapsed since
the construction of the first electronic analog computer, many funetion
multipliers have been built and many others proposed for use in com-
puting installations. The large variety of multipliers that have been
built is due to the varied requirements placed on function multipliers
by different computer laboratories. Some laboratories require maxi-
mum aceuracy from their function multipliers, while other laboratories
need multipliers capable of high-speed operation. The type of prob-
lems most frequently encountered in a laboratory is the primary con-
gideration in choosing the proper multipliers for the installation.

Most funetion multipliers can be classified as having good frequency-
response characteristics or as being capable of producing results of rela-
tively high precision. In general, speed of response can be obtained
only at the cost of precision, and viee versa. Recently, however,
funetion multipliers that combine the characteristics of high-speed and
high-aceuracy operation into a single deviee have been introduced to
the computing industry. The basic principle of operation of the new
multipliers is described in See. 8-2.

A few of the other more common multipliers will be deseribed in
subsequent sections of this chapter; however, no further mention will
be made of the servomultiplier, as it has been treated in some detail
in an earlier chapter.

Simultaneously with the development of funetion-multiplying equip-
ment, there has been carried out the development of arbitrary-function-
generating equipment.  Asin the ease of funetion multipliers, the fune-
tion generators can be elassed as high-precision or high-speed devices.
The distinetion is somewhat more difficult to make here, however, as
several of the function-generating devices in use today combine high-
speed operation with reasonably good aceuracy. None of the existing
function-generating equipment is without faults, however, and better
equipment will undoubtedly be introduced in the coming years, A
description of a few of the more important arbitrary-function gener-
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ators presently in existence will be the chiefl topic of the latter half
of this chapter.

8-2. The Time-division Multiplier. The device which seems to
have the greatest possibility of replacing the servomultiplier for aceu-
rate, high-speed analog computation is the stabilized time-division
multiplier.! The first commercially available models of this type of
function multiplier were produced by Goodyear Aircraft Corporation
in 1953. This multiplier is all-electronic and is capable of producing
static accuracies of the order of 0.1 per cent of full scale. The dynamie
characteristies of the GEDA N-3 multiplier, as deseribed by Baum and
Morrill? of Goodyear Aireraft Corporation, are (1) frequency response:
flat to about 200 eps, with a 3-db
rise at 1,000 eps; (2) phase shift:
16° at 200 cps and 0.7° at 10 cps.
This excellent dynamic response
has never previously been available
in a precizion function multiplier.

For some time Goodyear has pro- 0 Kax
duced a time-division multiplier; Fie. 81, Rectangular waveform of
however, the earlier model was not unfiltered time-division multiplier
nearly so attractive a device from  *"PU
the standpoint of use as is the stabilized N-3 model. The earlier model
was unstabilized and, therefore, was subject to drift. Because of the
drift, it lacked somewhat in repeatability and convenience of operation,
A further advantage of the stabilized multiplier is the ease with which
an adequate overload warning system can be incorporated in its design.
The overload warning system used on the stabilized multiplier is simi-
lar to the system used on stabilized d-¢ amplifiers. The operation of
overload warning systems will be discussed in Sec. 10-3.

The time-division multiplier forms the algebraic product of two vari-
ables by averaging several eycles of a guasi-reclangular waveform. To
describe the principle of operation of the multiplier and to make clear
the meaning of quasi-rectangular waveform, it is most convenient to
describe the logic of the multiplier in terms of the multiplication of
constants rather than variables.

Consider the waveform shown in Fig. 8-1. The duration of the
first portion of the rectangular wave of Fig. 8-1 is proportional to the
constant z, and the amplitude of the rectangular wave during time T'y
is proportional to the magnitude of the input constant y. Since the
second half of the rectangular wave has zero amplitude, the average
amplitude of the rectangular wave is proportional to the product ry
if the time T, 4+ T3 = T is assumed to be constant.

o T} e Ty ]
Hl:l" ——

Amplitude
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If the duration T of the complete waveform eyele shown in Fig. 8-1
is made very short and the process of generating a pulse of magnitude
and duration proportional to y and =z, respectively, is repeated at a
sufficiently high rate, then if z and y are variable quantities the incre-
mental change in x and y during the period T is small. The waveform
can, therefore, be defined as quasi-rectangular. The average magni-
tude of the quasi-rectangular waveform obtained with the variable
inputs z and y is a very close approximation to kry, where k is some
proportionality constant, if  and y vary slowly in comparison to the
time T of a single cyele of the rectangular wave.

The components necessary to demonstrate the principle of the time-
division process, as described above, are:

1. Two electronic switches

2. An integrator

3. A bistable multivibrator

4. An output amplifier and filter

The manner of interconnection of these components is indicated in the
block diagram, Fig. 8-2. Frequent reference to Fig. 8-2 will be made
during the detailed description of the multiplier contained in the
remainder of this section.

In Fig. 8-2 consider the bistable multivibrator. The output of the
multivibrator is of rectangular waveform as shown in the block dia-
gram. The durations of the first and second portions of the rectangu-
lar wave are T, and T, respectively. The bistable multivibrator is
caused to switch from ite first stable state to its second stable state
when the output of the integrator reaches a reference voltage e,, and it
switches back to the first stable state when the integrator output falls
to the voltage level ¢,.

The stabilized electronic switches 1 and 2 are controlled by the out-
put of the multivibrator, and they conduct when the multivibrator is
in state 1. Examination of Fig. 8-2 reveals that the input to the
summing integrator during state 1 is

z

2ab

2ab  ab

x z z I
>+ o - (8-1)
where a, b, and ¢ are constants. Since the output of the integrator
must be increasing in a positive sense during this period, it is required
that

| M

Z
5cf > (8-2)
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The output of the integrator is, therefore, caused to increase linearly
with time and the duration of state | is established by Eq. (8-3):

T
ﬁ:j; (g“ﬁ)d!=£:—m (8-3)

where k is the gain of the integrator.
The basic assumption made in the multiplier is that the output of

i 1
Zab
-EIE...—!E :!_‘24;
Stabilized |-— o= = Stabilized .{f\.s'
v |? -i- —» electronic [—— ':; * summing " ]
|
Section switch 1 integrator
T
=
x o L v Ty 1T
Bistable
= multivibrator
1r
o ¥ i
. T | Stabilized |-3. 015 5':&;;:“ o
L d | HH:-"T? HE amplifier [ "%
Saction switc ™ and filter
¥
o 1 |2
L | 2ad

Fra. 82, Block diagram of a stabilized electronic multiplier. [(Courfesy of Goodyear
Aireraft Corporation.)

the multivibrator is of quasi-rectangular waveform. To satisfy this
requirement, it is necessary that the eyele rate of the multivibrator
he sufficiently high to ensure that the inputs z, y, and z remain essen-
tially constant over several cycles of operation. Equation (8-3) can,
therefore, be treated as though x and z are constants, giving

€1 — €
Ty = kGr2ab — /0 (6-4)

As soon as the output of the integrator reaches the voltage level ¢,
the switches 1 and 2 open and the input to the integrator becomes
¢/2ab 4+ z/e. 'The duration T3 of the second portion of the cycle 18
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established by Eq. (8-5):
Ty
2 T
k’/; ('EEE‘l‘E)I'H:ft_E'E {E"ﬁ}

Again z and z can be assumed econstant and the equation gives
- f1— €1

7 k(z/2ab + z/c)

Returning again to Fig. 8-2, it is seen that during period T, the

output of electronic switch 2 is —y/d and that it is zero for period T..
The average input to the output amplifier and filter is then

T (8-6)

_ _ vy Ty I_L_) .
V8 = ol T kAT, + Ta = kd (E 1) &7
Substituting values of T, and T'; obtained in Eqs. (84) and (8-6) into

Fq. (8-T7) gives

_ab zy
€ (ave) = o (8-8)

The gain of the output amplifier is made equal to ked/ab so that the
output voltage is xy/z.

From Eqs. (8-4) and (8-6), it is readily seen that the duration of
Ty and T's are functions of z as well as x. Further, it is apparent that,
as z is reduced, the repetition rate of the bistable multivibrator is
reduced. This creates a filtering problem and imposes a lower limit
on the value of z. For this reason z is usually chosen as a fixed refer-
ence voltage. If the reference voltage is 4100 volts, then the output
of the multiplier is xy/100.

The multiplier is supplied in two forms: a master multiplier con-
sisting of an X section and two Y sections, and slave multipliers con-
sisting only of ¥ sections. If it is desired to multiply the variable z
by more than two variable quantities, it is necessary to connect the
timing pulse from the X section to additional ¥ channels that ecan be
purchased separately. In this manner, considerable economy of equip-
ment ig achieved.

The stabilized electronie switeh used in the multiplier circuit is of
considerable interest. The heart of the switch (see Fig. 8-3) is a stabi-
lized d-c amplifier. The switching action is obtained by alternately
connecting different feedback impedances into the circuit. During
the period T, tube V3-A is allowed to conduct and V3-B is cut off,
V1, therefore, is cut off and V2 conduects, connecting &5 into the feed-
back path. The output from the electronic switch is taken from the
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junction of Rs and V2. The amplifier gain is correspondingly R:/R.:.
During the last half of the eyele, T, V3-A is cut off and V3-B con-
ducts. V2 is, therefore, cut off and V1 is allowed to conduct, con-
necting R, into the feedback path. In this condition, the output of
the switeh is maintained at zero, since it is connected through £, to the

grid input of the amplifier.

+200
ATATAY,
RI
V1-A - 5W1-B §
L e
, V3-A ViB
AR A High-gain d-¢
: amplifier g
Hl
vz-AG'-'_ —/v2B
=200
| AAN— 4
R -
Output to integrator 2
&=y 0<e<Ty —> % Fram bistable
where To integrator multivibrator
a=t [ U
B, I T;

=0 [Ty e<Ty+ T3
Fra. 8-3. Basic principle of operation of one form of electronic switch.  (Courlesy of
frondyear Aircraft Corporalion.)

The stabilized electronic multiplier has been realizable for some time.
Goldberg? first demonstrated a cireuit stabilizing a d-c amplifier prior
to 1947, but it was not until Ingerson® suceeeded in stabilizing a large
number of d-¢c amplifiers with a single pulse amplifier that the stabi-
lized time-division multiplier circuit was developed. The incorpora-
tion of the Ingerson stabilization system allows a very appreciable
reduetion in the number of vacuum tubes required in the circuit, and
in addition it eliminates the necessity of a costly chopper for each
amplifier. The Ingerson scheme will be discussed in more detail in
the section on stabilized d-e amplifiers (Sec. 10-2). Subsequent to the
produection of the first stabilized electronic multiplier, rapid develop-
ment of similar devices has taken place. Multipliers using either the
(ioldberg or Ingerson stabilization system are available at present.
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8-3. Quarter-square Multipliers. A multiplier that is relatively
important because of the number in use, rather than because of the
high quality of the results produced, is the quarter-square multiplier.
This multiplier has been used extensively with repetitive-type com-
puting equipment (see Chap. 12), as it has good frequency-response
characteristics.

The name quarter-square multiplier comes from the equation that is
mechanized in performing the multiplication. The equation mecha-
nized is the identity

Iy = M[{Il + x9)* = (x; — 1‘:}"‘] {S—'EI]
It is apparent from Eq. (8-9) that, if a deviee can be constructed that

~xy
1 £+ (x5 +xs)2
1 +xz 17x
-xs Squarer
—! b
XX
-x ] i i
X~ X2 [xy=x2]
tx3 1 Squarer

Fia. B-4. Block diagram of a quarter-square multiplier,

is capable of performing the operation of squaring, a quarter-square
multiplier can be readily constructed. The block-diagram represen-
tation of a quarter-square multiplier is shown in Fig. 8-4.

Philbrick computing equipment® utilizes a multiplier of this type.
The squaring circuit used in the Philbrick multiplier takes advantage
of the nonlinear characteristics of a triode. The nonlinear character-
istic of interest is the variation of the plate current iy approzimately
proportional to the square of the plate voltage applied, or

iy = key? (8-10)

Sinee the equivalent plate resistance of a vaeuum tube is

Ry = E (8-11)

dividing Eq. (8-10) through by e, produces the equation

L _ i
B2 =k (8-12)

* George A. Philbrick Researches, Inc., Boston, Mass,

MULTIPLIERS AND FUNCTION GENERATORS 143
Inverting Eq. (8-12) gives the expression

1 I
Ry, = e, (8-13)
which makes possible the ready understanding of the squaring eircui
of Fig. 8-5.

b-_,'.-_h':

Fia. 8-5. Bquaring circuit utilizing the nonlinear characteristics of vacuum tubes.
Tubes ¥V, and ¥y serve as the input impedance of the high-gain amplifier.

Vacuum tubes V, and Vy serve as the input impedance of the high-
gain amplifier. Since K; is a constant, the gain of the circuit is

Figure 8-5 shows, however, that &, = |e, for ¢; either positive or nega-
tive, so that Eq. (8-14) can be written as

e, = —ke (8-15)

The grid inputs of V', and V3 are supplied by constant voltages that
must be adjusted to give operation on the proper portion of the charac-
teristic curve. Needless to say, a multiplier constructed with a squar-
ing device of this type can never be expected to achieve the accuracy
obtainable from the servomultiplier or time-division multiplier,

8-4. The Crossed-fields Multiplier. Another multiplier that is
capable of very-high-frequency response is the crossed-fields multiplier.
The crossed-fields multiplier was developed by Macnee,® and like the
(quarter-square multiplier it is well suited for use with repetitive com-
puter installations.

Figure 8-6 shows the basic components of a crossed-fields multiplier.
The basic components are an electrostatic deflection cathode-ray tube,
two photocell pickups, and a differential amplifier to amplify the dif-
ference of intensity between the signals produced by the photocells,
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A magnetic deflection coil, placed around the neck of the cathode-ray
tube, completes the essential components of the multipher.

In operation, a current I, is passed through the magnetic deflection
coil. A voltage V, applied to the vertical deflection plates of the tube
then deflects the electron beam, causing it to cut lines of magnetic
force produced by the eurrent I; in the magnetic deflection eoil. The
magnetic field causes the electron beam to be deflected horizontally.
A light barrier placed vertically along the face of the cathode-ray tube
divides the face into two halves. If a greater intensity of light from

Light the cathode beam falls on the photocell
barrier i associated with either half of the tube
' 1‘{. 1 — o¥ face, an unbalanced condition exists in

. < the voltages produced by the photocells,

The unbalanced photocell voltages are
amplified by the differential amplifier

and applied to the horizontal deflection
plates of the cathode-ray tube. Equi-
librium conditions are reached when

PhotocellsF>
(O

o\ T
3

| Differential | | the voltage Vs produced by the dif-
amplifier W . , .. .

ad ferential amplifier, is just sufficient to

= restore the beam to its neutral posi-

Fra, 86, The crossed-fields multi- tion. In the equilibrium condition the

plier. voltage Vy is approximately propor-

tional to the vertical deflection voltage V', and the current [, in the
magnetic deflection coil.

If V, and I, are made proportional to quantities x, and r;, then the
voltage Vs, developed across the horizontal deflection plates, is pro-
portional to the product zz..

8-6. Other Multiplying Devices. There are several other multiply-
ing devices currently in use, or proposed for use, with analog com-
puters. All these devices have some undesirable features, just as have
the devices previously discussed. In general, either aceuracy or speed
has been sacrificed in the design, depending upon the use to be made of
the multiplier.

A partial list of multipliers and their capabilities is given in Table
1. The type of multiplier, its developer or manufacturer, type of
operation, and principle of operation are given in the table. The
table is not intended to be complete but indicates, to some extent,
the availability of several multipliers,

8-6. Function-generating Equipment. Frequently it becomes nee-
essary to introduce arbitrary functions into a problem. The require-
ment may arise from the need to represent nonlinear effects or to intro-
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duece a particular foreing function into a problem. A listing of all
phenomena easily simulated by means of arbitrary-function-generating

TanrLe 81
I
Developer or :
_— facturer ' Prinecipal
Multiplier o . pa ;
uitp (if commercially characteristics Comments
| available) ,

Servomulti- | Reeves Instr. Corp., | Capable of high ac- | Presently the most
plier | New York, N.Y.;| curacy, but poor| common multiply-
Goodyear Aircraft |  frequency ing device in real-

' Corp., Akron, Ohio;| response fime computer in-

| others stallations
Time-divi- | Goodyear Aircraft Relatively high= At present the most
sion multi- ! Corp., Akron, Ohio; |  speed, high-ac- promising multiplier
plier Beckman Instr. curacy operation | for high-precision,

| Corp., Richmond, |
| Calf,; Heeves Instr.
Corp.,, New York, |
N.Y.; Electronic
Associates, Ine,,
Long Branch, N.J.

high-speed analog-
computer operation

{Juarter- (ieo. A. Philbrick Re- | Low-aceuracy, high- Used extensively with
B LA searches, Ine., Bos- speed operation repetitive
multiplier ton, Mass, computers

{rossed-fields | A, B. Macnee High-speed opera- | Very satisfactory for
multiplier tion, moderate repetitive computer

accuracy installations

Fleetrodyna- | Bpecialties, Ine., Moderate accuracy, | Originally  developed
mometer Skunk’s Misery relatively low fre-|  as compact pack-
multiplier Rd., Syosset, N.Y. quency response | aged component for

(0.5 cps) | aircraft applications

Etep-relay RRCA Research Labo- | Very high accuracy | Developed specifically
multiplier ratories, Princeton, obtainable, speed for the Typhoon

N reduced as accu-|  computer, a three-

racy is incressed dimensional missile

simulator; some re-
lay troubles encoun-
tered

cquipment would be voluminous, A few commonly encountered fune-
tions easily represented by means of such equipment are:

l. The nonlinear damping of an aireraft shock strut having a tapered
metering pin.

2. The nonlinear spring force needed to represent a pneumatic tire

under load.
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isti of a turbojet engine.
3. The torque-vs.-rpm characteristic curve _
4. The variation with altitude of the index of refraction of & non=
neous air mass such as the earth's atm?uspham.
hn.;n ﬂ’ﬁm variation of the coefficient of drag with Mach number for &
issile in flight. . 1 '
m-!} Any arbitrary forcing function that m_1ght be desired. T:,fpm_ll
mig.ht be the gust loading of a structure in the path of an atomie
explosion.
g The load distribution placed on a structural ;nemhe:'.
+ 1 1 rnout.
. The change in thrust of a rm::ket_aa it nears bu
3 The variation of density with altitude in the earth’s atmosphere,
1':1 The generation of sinusoids, squares, cubes, square roots, cube
ts and exponentials, ete.
m;ume of the functions mentioned here may be generat?d rela-
tively easily internally in the computer. Others of the functions are
extremely difficult to represent mathematically and almost hnFa]dau
to attempt to generate internally on an a:nalng computer. The n t:;
sion of arbitrary-function-generating eqmpmemt_ as part of a cnmpum
installation thus considerably extends the uh11_1t_=,r of the compu
installation to handle any problems that may arise.
m?‘ie function-generating equipment available for a.nalf:rg-cﬂm}mtar
use i extremely varied. The devices vary considerably in ﬁdeht:,r;df
reproduction and in frequency response. In many cases l;ha_ l:a.aamt
operation or setup of a particular function generator may .he its m
a.ftﬂmntive (or unattractive) characteristic. In the f_ulluwmg pages &
brief discussion of some of the more common function generators is
prﬁnt;te Input Table. In the early days of the n?lectrnnic 9‘.“:;"
computer the natural trend was to hnrmf-r techniques previously
established for use with mechanical differential anallyzem. The 'm'ﬂ-lt
common procedure for generating arbitrary functions when using &
mechanical differential analyzer is to plot the .requm}d funfr:uun, B8y
f(x) vs. z, on & graph sheet and by hand-tracking tlEe function tI::]] an
input table, cause the function f(z) to be introduced into the ]}l;; em,
The essential components of a manually operated input table ::
shown in Fig. 8-7. The input shaft is driven proportional to a pro
lem variable z, and the operator, by means of the hand 'crauk, kmﬂ
the reticle at all times positioned on the curve re_pmaentmg 1(z).
the case of the mechanical differential analyzer, incremental changes
of the generated function are introduced into the problem as a rotation

of the output shaft Af(z). The input tables used with electronic anfs

log computers differ from the system illustrated in Fig. 8-7, as the
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input and output shaft positions are controlled by servomechanisms
positioned by d-c voltages. The principle of operation is the same,
however.

The manual-tracking method of arbitrary-function generation is
relatively satisfactory for the mechanical differential analyzer, as prob-
lem operating speeds are low and little difficulty is encountered in
keeping the reticle properly positioned. Even for a mechanical differ-
ential analyzer, however, an imaginative person makes a VEry poor
“tracker,” as he tends to attempt to compensate for errors he has

Fra. 8-7. Mechanical input table.

made previously. In this manner he unconsciously introduces a bias
into the problem.

With the higher problem speeds of the electronic differential ana-
lyzer, the hand-tracking method was found to be unsatisfactory. It
was no longer possible to track sufficiently accurately and with suf-
ficient repeatability at the higher speeds required. To slow the prob-
lem speed sufficiently to allow hand tracking is unsatisfactory, as

integration errors are then increased.

It was not long after the introduction of the electronic analog com-

puter that a satisfactory solution to the problem of function generation
was reached. The first major improvement over manual tracking
was the introduction of servo-driven function potentiometers. The
Junction polenliometer consists of a linear potentiometer mandrel in
vontact with a conductor affixed permanently to a plastic drum. The
eonductor is positioned on the drum in such & manner that it contacts
the mandrel at & point having a potential proportional to f(xr) when
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the drum is positioned proportional to z. The disadvantage of fune-
tion potentiometers is that the preparation of a drum to generate a
function requires a special lathe. Economical use of this technique
of function generation is, therefore, restricted to those functions which

are to be used many times,

Fia, 8-8. REAC input-output table.

The servo-driven arbitrary-function-generating device finally came
of age when it was determined that a wire could be E‘Etl‘fﬁtltud on &
graph sheet and used in much the same manner as the function potenti-
ometers. The scheme is particularly attractive since all existing two-
axis recording equipment can be easily and economically converted to
perform automatic arbitrary-function generation. The only Ilnﬂdiﬁw
cation necessary in most cases is the addition of a linear potentiometer
mandrel at right angles to one of the driven axes of the recorder. A
photograph of a Reeves input-output table modified for arbitrary-
function generation is shown in Fig. 8-8, The schematie represen=
tation of an input table used for automatic function generation 18
shown in Fig. 8-4.

In Fig. 8-9 the drum is servo-driven to a position proportional to
the input signal z. A wire is cemented to the graph of the fllli['fi[:jtl
f(zx) vs. x, and this graph is attached to the drum. A linear potenti-
smeter mandrel is attached to the frame of the input table perpendicu-
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lar to the x axis of the plotted function. The mandrel makes contact
with the wire cemented to the graph at the position determined by
the input signal x. When suitable reference voltages K, and K. are
placed on the ends of the linear potentiometer mandrel, a voltage pro-
portional to f(z) is present on the wire. This voltage is used as the
output of the device.

Experience has shown that the adjustment of the input reference
voltages K, and K1 can be accomplished most easily by trial and error,
The procedure recommended is to first establish the magnitude of the
output Kf(z) desired, then mark two points z, and z: on the curve
flx) vs. . One point should be for f(z,)
large and the second for f(z.) small.
Having established the magnitude of the
output desired, it is a simple matter to
ralculate the voltage needed to represent
Kflzy) and Kf(rs). The drum is then
rotated to the position z; and potentiom-
eter 1 18 adjusted to give the voltage
Ki(xy) at the output of the function gen-
erator.  The drum is then moved to posi-
tiom s and Kf(x:) is adjusted by means of
potentiometer 2. Unless one end of the Y19 8-9. Block-diagram repre-
. . sentation of o wire-mandrel
inear mandrel is exactly at the zero type of automatic input table,
position of the graph of f(z) vs. =z,
the adjustment of K, will affect the value of f(z,) previously set by K,.
It 18, therefore, necessary to repeat the procedure until no change is
observed. The entire time spent in the calibration of the output will
normally not consume more than about five minutes, as three or four
ndjustments of potentiometers 1 and 2 are usually all that are NECeSSAry
lo give convergence of the output voltages to the desired values.

In Fig. 8-9 the input table is shown with constant inputs at the
ends of the potentiometer. The constant inputs ean be replaced by
tu where u is a problem variable. In this manner, a multiplication is
saved at another point in the eircuit if the produet Kuf(x) is needed.

Care should be taken, when using the linear-mandrel type of fune-
tion generator, to load the output with as high an impedance as possi-
ble to minimize loading errors, For a potentiometer approximately
10 in. long and having 20,000 ohms resistance, the maximum error,
when loaded by a 1-megohm resistor, is approximately 45 in. on the
graph of f(x), or 0.5 per cent of full scale. This error is slightly greater
than the maximum error that need be made in laying the wire curve
if care is taken. Therefore, using 2 megohms as the input impedance

+ 100 =100

79

Kfix)
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of the amplifier fed by the function generator is justifiable if maximum
accuracy is to be achieved.
With a little practice, the wire curves can be prepared in little more
than the time necessary to draw the graph from a tabulated set of data.
A fairly complex curve can be prepared in about twenty minutes,
A few remarks can be made regarding the preparation of the graphs.
The wire should, of course, be straightened by stretching it beyond its
vield point to remove all bends and kinks. The consistency of the
glue (duco cement or radio service cement) is the key to easy prepa-
ration of the graphs. It should be thinned until almost water-thin.
It will be necessary to handle the finished graph more carefully if this
18 done, but more trouble-free operation will result. If heavy glue is
used, it has a tendency to shrink upon drying and pull the paper up
around the wire, resulting in a poor contact between wire and potenti-
ometer. A second consequence of using heavy glue is the necessity
to sand the wire excessively to ensure good contact. The sanding
requires too much time if done with crocus cloth and roughens the
surface of the wire if done with heavier materials. Needless to say,
a roughened wire will very rapidly destroy the linear potentiometer
mandrel during operation of the input table.
Several modifications of the wire-mandrel arbitrary-function-gener-
ating scheme have been proposed and built. The basie idea behin
these modifications is to eliminate the necessity of laying a wire
the graph. Silver paint and other conducting materials have been
used, but a frequent difficulty encountered with these materials is that
they tend to smudge with prolonged use. Another possibility that has
been investigated is the use of a photocell pickup to supply the driving
signal necessary to position the reading head to the proper position.
So far as is known, none of these devices has been able to provide as
trouble-free operation as the simple linear potentiometer and wire,
Development work is still being continued.
Another scheme to provide curve-following capability in a servo-
driven recorder has recently been developed. The graph of the fune-
tion to be reproduced is drawn with conducting ink on a graph sheet.
Instead of using a brush or potentiometer mandrel to sense the position
of the conducting line, as some schemes do, this system avoids physical
contact with the line and thus eliminates any possibility of smudging
and poor contact.
In this function generator the conducting line is energized by a high-
frequency current. The pickup stylus contains a coil which senses the
magnetic field radiated from the conducting line. The signal from
the pickup head is then demodulated and used to drive the servo-
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motor which keeps the stylus always positioned over the conducting
line. The servo also drives a precision potentiometer that supplies
the desired output voltage f(z) when suitable reference voltages are
placed on its ends.

The magnetic-stylus-pickup scheme of arbitrary-function generation
appears to have excellent possibilities of becoming a popular method
of funetion generation. It offers ease of graph preparation and should
sive good fidelity of reproduction of the required curve.

= -
Photocel] =
o =~ 1" R
C - Ha — :ﬂ ______ EjJ #
Lens
Mazk system
1 — D-c-
amplifier
D-c
— amplifier fix)
Bias

F1c. 8-10. Block diagram of a photoformer funetion generator,

8-8. The Photoformer. The photoformer® is one of the develop-
ments brought about by the requirement for a high-speed arbitrary-
function generator. It consists of a cathode-ray tube, a mask, an
optical system, and a photocell, together with the amplifiers necessary
to drive the horizontal and vertical deflection plates of the cathode-ray
tube (see Fig. 8-10). A bias voltage is applied to the vertical deflec-
tion plates to deflect the beam to the top of the cathode-ray-tube
sereen.  When light falls upon the photocell, the voltage produced is
npplied to the vertical amplifier and drives the beam toward the bottom
of the tube. The resulting vertical position of the electron beam is,
therefore, determined by an opaque mask at the focal point of the lens
system which serves to cut off the light from the photocell.

The mask is prepared as a plot of the function f(z) vs. z, with the
nrea below the curve made optically black and the upper area trans-
parent. As the electron beam is driven horizontally by an input sig-
nal z, the output f(x) is obtained as the voltage across the vertical
deflection plates of the cathode-ray tube.

The photoformer is sufficiently fast in response to allow its use with
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repetitive computers, but 1t 18 a relatively low-accuracy device. The
usable mask area on many photoformers iz approximately 2l in.
square. Needless to say, it is very difficult to prepare a mask for the
generation of a function with much detail on this small an area. Two
methods of mask preparation are commonly in use. The first is to
draw the function to seale directly on the material to be used as the
mask and, after trimming the material, use it as the mask. The sec-
ond and preferred method is to prepare the graph of the function to be
generated on the photoformer on a large sheet of paper. The graph is
then reduced to the proper size by photographic means, In the latter
method of mask preparation, the area underneath the eurve repre-
senting the desired function should be blackened before photograph-
ing the curve so that a positive transparent photographic print can be
used directly as the photoformer mask.

Even when the second method of mask preparation is used, dis-
tortion of the generated function still results., This distortion results
from nonlinearities in the photoformer deflection circuits and from the
finite size of the spot formed on the face of the cathode-ray tube. An
additional inherent error in photoformers using electrostatic deflection
cathode-ray tubes arises in the manufacture of the tubes. The hori-
zontal and vertical deflection plates of such tubes are seldom found
to be at exactly right angles. This produces a distortion for which it
is difficult to provide compensation.

A method of photoformer-mask preparation that has been proposed
as o means of minimizing errors in photoformer function generators i8
to cause the photoformer to prepare its own mask. This can be accom-
plished by driving the horizontal deflection plates with x and the verti-
cal plates with the function f(x) produced by some other more precise
function-generating equipment. The cathode-ray beam is then used
to expose a photographie plate, which in turn is used as a mask after
suitable processing. This system of mask preparation is cumbersome
but reduces errors arising from nonlinearities in the photoformer.
OUbviously, this scheme iz not very practical for most applications,
as the desired funetion f{z) vs. x first must be generated on some other
function-generating equipment in order to prepare the photoformer
mask.

A modified version of the photoformer has been built by Armour
Research Foundation* that is probably capable of greater fidelity of

* This function generator was constructed under Air Foree contract 33(038-
12309) by the Armour Research Foundation, Illincis Institute of Technology. It
is deseribed in a manual entitled “Instruction Handbook for Generator, Bpecial
Funetion, for FElectronic Analog Bimulating Equipment,” Armour Research
Foundation, January, 1952,
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reproduction of the desired function than is the conventional photo-
former. The advantages of the Armour photoformer are twofold.
First, the modified photoformer utilizes magnetic deflection cathode-
ray tubes, which allows closer control of the angle between the deflec-
tion axes of the tubes than is usually available in eleetrostatic deflection
tubes. Second, the preparation of the mask is easier and can be done
more rapidly, because the function to be generated is plotted on a
relatively large surface provided for that purpose in the photoformer.
The function is plotted directly with white ink on a special black plate
of relatively large size. The photoformer optical system causes the
cathode-ray tube beam to follow along the white line as the beam is
driven horizontally proportional to the argument of the generated
funetion. The generated funetion is proportional to the voltage devel-
oped across the vertical deflection windings of the cathode-ray tube.

8-9. Diode-type Arbitrary-function-generating Equipment. Diode-
type arbitrary-function-generating equipment has become increasingly
popular. The increased popularity of the diode function generators
can be attributed to several desirable features that they possess.
These desirable features are:

1. Ease and speed with which they can be set up to generate a
funetion

2. Good frequency response

3. Relatively low cost of the equipment

4. Good fidelity of reproduction of most functions

The diode-type function generator approximates the desired arbi-
trary function by a series of straight-line segments. The number of
straight-line segments usable in the representation varies from 5 to 22,
depending upon the manufacturer of the equipment. The diode fune-
tion generators are supplied in two forms: with variable voltage break
points, and with fixed voltage break points. A break poini is the point
of intersection between two straight-line segments comprising a por-
tion of the curve. The variable-break-point function generators have
the advantage of greater flexibility and in general closer representation
of functions having exceptional curvature, The cireuitry of the vari-
able-break-point function generators is slightly more complex, and
correspondingly these function generators are more expensive than
funetion generators having fixed-break-point voltages.

The operation of the variable-break-point generator ean be demon-
strated by using the cireuit of the Ease arbitrary-funetion generator?
(Fig. 8-11). In the diagram of Fig. 8-11, two stages of the function
generator are shown, The Ease function generator consists of 11 simi-
lar pairs of diode circuits. If the function to be generated is f(z) vs. ,
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the portion shown controls one segment of f(x) in the region =z <0,
and one segment in the region z > 0. Bince the function generator 1s
symmetrical, it is necessary to place a bias a; on the input z, so that
one-half the segments of the function to be generated lie in the region
z + a; > 0 and one-half in the region 4+ a; < 0 in order to use all
22 straight-line segments in generating a particular function.

=100

+100—

+0Qutput
Break
voltage

{Hﬂb\?
Break A
t::*ﬁ..__h_

Input
= Qutput
Ground —

T R R — — —— — — — — — — — S SRS ESEN e NN W —

Fia. 8-11. Two stages of the Ease variable-break-point diode function generator.

The actual operation of the function-generator circuit can be more
easily visualized if the circuit diagram is further reduced. Consider
only the operation of the circuit directly associated with tube T'; in
Fig. 8-11. If, in the circuit of Fig. 8-11, the voltage at the cathode of
T is replaced by a constant voltage V' whose magnitude is controllable
by the setting of potentiometer Ps*, the circuit can be redrawn as in
Fig. 5-12.

In the circuit of Fig. 8-12 as long as

Ky
RI+EI{F

the diode T will not conduet.
are always at zero potential.)

(8-16)

(The grids of operational amplifiers
With T'; not conducting, the voltages
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¢y and es are equal and f(r) is zero, since Ky and R; are chosen to be
equal. If
Ity .
Ry + R

the diode Ty will commence conducting, and the difference between
¢, and e; will be proportional to r providing P; is not centered. If
Ps i set at its exact center, ¢; will equal e, for all values of r and f(x)

>V (8-17)
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ﬁ
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X

Fig. 8-12. Bridge form of representation of one stage of the Fase diode function
Eénerator.,

will be zero. If P, is not centered, e, will differ from es. For a par-
ticular setting of Pa, the output f(z) will vary linearly with z and its
slope will be either positive or negative, depending upon the setting
of Ps. The magnitude of the slope is dependent upon the setting of P,
and on the magnitude of the feedback resistor R, of the final summing
nmplifier, The other stages of the diode function generator operate
in a similar manner., The positive and negative outputs of each are
summed in the same amplifiers, so that f(x) is the sum of the output
of all the stages in the function generator.

The setup procedure is relatively simple. The break-point voltages
r; and the magnitude of f(x;) at each break point must be tabulated.
Iiach break point and the corresponding slope is then set on the potenti-
ometers associated with the proper diode. The accuracy of the fune-
tion generator is, of course, determined largely by the function to be
generated, as a straight-line representation is used. If as many as
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22 segments are available, quite complex functions may be represented
to an accuracy of 1 per cent, or better.

A very simple scheme is available to apply smoothing to the output
of a diode function generator and thus to produce rounded corners

c
i
10 ke B,
generator | A A i
t’“—k‘j z Diode R,
_':'M function -.—Il'iulm i—ﬂ[:
Benerator

Fig. 8-13. Block disgram showing a method of smoothing the output of a diode
function generator,

rather than abrupt changes of slope in the generated function.* Figure
8-13 illustrates the scheme,

A high-frequency noise signal is introduced into the input signal z.
The presence of the noise signal causes the diode associated with each
e, break point to start conducting
intermittently before the break
point is actually reached, As
the input approaches closer to
the break point, the diode con=
ducts a greater percentage of the
= time. A small condenser in the
feedback path of the output am-
plifier serves as a filter to average
the voltage produced by the in-
termittent conduction of the
Yro. B14. Th ot ol o diode. The resulting function
fac bt T ponducton shursterities 1) s rounded comers rather
conduction characteristic for a clean in- than ]Jﬂll'lt-l'i of dlﬂﬂﬂl’ltiﬂuit}' of
put signal. The da.ﬂ-h['ﬂzl |i.|_'|E.' shows the slope. Figure 8-14 shows the
flllffﬁdm‘:"p"l when noise is present on Fﬂ‘eut of upll;}l:r'ing noise to the

input of a diode.

A tnangular noise signal has been found to be very useful in smooth-
ing the output of a diode function generator, as it gives a predictable
smoothing effect. The use of a triangular-waveform noise signal gives
approximately parabolic corners.

In fitting curves when using smoothing it 1s necessary to choose the
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break points outside the curve to achieve the best results. A little
experience will allow the computer operator to achieve excellent func-
tion representation using this scheme,

8-10. Tapped Potentiometers. Tapped potentiometers have fre-
quently been used as function-generating equipment., The principle
of operation is illustrated in Fig. 8-15. Other circuit arrangements
are in common use, and though superior from the standpoint of requir-
ing less current from the power sup-
ply and being self-protected from
burning out the main potentiome- i
ter, they are less flexible in opera- i
tion than the eircuit shown here. _,\k,\ﬁ

In Fig. 815 the main potentiom- | i
cler may be either a single-turn or
helical-type potentiometer with as .
many as 40 taps. A voltage is .
connected to each of the taps from
low-accuracy calibration potenti-
ometers. The wiper of the tapped I
potentiometer is driven propor-
tional to the argument z, and the <+ -
output varies according to the FIti.lﬂ-I-‘.':. Tapped-potentiometer arbi-

. trary-function generator.
voltages set at each tap. In this
manner & function is represented by as many as 39 straight-line
segments.

The earlier models of the tapped-potentiometer function generators
had one very important drawback. Although the cost was low, the
reliability excellent, and the fidelity of reproduction good, the time
required to set up a function was excessive. This one feature limited
the usefulness of the devices,

The excessive setup time was due to the interaction between the
voltages applied to the individual taps. As the voltage at each tap of
the potentiometer was adjusted, it affected the value at every other
tap. It was, therefore, necessary to adjust each potentiometer several
times in order to arrive at a satisfactory representation of the desired
function. Experience in using the deviece shortened the setup time,
however, as the operator learned to compensate for the calibration-
potentiometer interaction effect and thus was able to reduce the num-
ber of trial adjustments.

Electronie Associates Incorporated contributed considerably toward
the usefulness of tapped-potentiometer function generators when they
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developed a calibration scheme that does away with the interaction
between taps during calibration. This scheme is shown schematically
in Fig. B-16.

The potentiometers provided in the Electronics Associates function
generator have 17 taps and, thereby, can represent a function by 16

T bt
ntiometer
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Fra. 8-16. The Electronics Associates, Inc., scheme for setting tapped potentiom-
eters.

straight-line segments. To each tap of the tapped potentiometer is
connected a padding potentiometer controlled by a switeh: it is con-
nected to the positive or negative reference voltage, connected to
ground, or left open depending upon the switch position. By vary-
ing the resistance in series with each tap, it is, therefore, possible to
provide any desired voltage at each tap.

In adjusting the function generator, the desired voltages for each
tap are first set on 17 precision potentiometers provided on the con-
trol panel. The particular tap being adjusted is then compared, by
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means of a null meter, with the voltage previously set on the corre-
sponding precision potentiometer.

To prevent interaction of the taps, the tap voltages are adjusted in
seqquence starting with the first tap. As indicated in Fig. 8-16, the
next tap in the sequence is fed its true tap voltage during the adjust-
ment of the preceding tap. This is accomplished by feeding the volt-
age from the precision potentiometer through an isolation amplifier of
unity gain. Since the isolation amplifier has an output impedance of
approximately zero, the tap that it feeds is forcibly held at the proper
voltage, thus providing the proper load on the tap being set.

A multiposition switch is provided that allows the convenient selec-
tion of the tap that is to be set and also positions the servo so that the
wiper of the tapped potentiometer is positioned to the tap that is
being set.

The tapped potentiometer is very well suited to the generation of
standard functions such as sines, cosines, and exponentials. For these
functions, the adjusting potentiometers can be replaced by fixed resis-
tors. A suitable plug-in device then allows the function generated by
the tapped potentiometer to be changed by changing a plug-in unit
containing the calibrated resistors.

8-11. Resistive Materials as Function Generators. A means of
generating arbitrary functions that has recently been exploited is the
use of resistive materials. By means of these materials it is possible
to represent two-dimensional field effects. The description of a par-
ticular problem that has been solved by the method will make clear
the techniques involved.

Example 8-1. It is necessary to determine the heat distribution required to
ide-ice & radome under varying atmospheric conditions The basic problem is,
therefore, to determine the distribution of water droplets striking the radome in a
region of precipitation. It i8 assumed that the radome is symmetrical and that
only two-dimensional effects need be represented. The geometry of the problem
can, therefore, be represented as in Fig, 8-17. Because of the symmetry, only one-
half the radome need be shown, and since icing occurs only at the leading edge,
the rear section may be omitted. In the diagram, u, and w, are the z and y com-
ponents of the veloeity distribution of the air flow and v, and v, are the correspond-
ing components of the velocity of the water droplet. The velocity of the water
particle is a function of ita mass and the au:mlynu.miu forees acting upon it. From
the geometry it is apparent that

vy = f{u,) and #, = flu,) (8-18)

If the veloeity distribution of the air around the body is adequately represented
in such s manner that the data can be introduced into the computer, it is then a
relatively easy task for the computer to calculate the x and y position of the water
particle with respect to time, A plotting board is then used to plot the droplet
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trajectories for various initial distances y(0) from the center line. After plotting
families of trajectories for various-sized particles, the icing distribution is deter-
mined from gtatistical studiea of droplet gize normally encountered under various
atmospheric conditions,

The technique of representing the velocity distribution of the air flow around the
object is the main point of interest in this discussion. A direct analogy exists
between the two-dimensional velocity distribution of the airflow around an object
and the potential distribution in a resistive medium of the proper shape. If con-
ducting strips at potential P, and P; are placed at the ends of the resistive material,
lines of constant potential gradient along the resistive material correspond to the
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Fia. 8-17. Water-droplet trajectories,

aerodynamic streamlines, A three-pointed probe contacting the resistive material
then picks up voltages proportional to u, and wy if one pair of contacts, the refer-
enece probe and a second probe, are oriented along the r axis and the reference
probe and third probe are oriented along the y axis, It is these voltages, u, and Ty
that are fed to the eomputer in order to ealeulate the x and y positions of the water
droplet as a function of time.

Early attempts at solving the problem using a solid resistive material were
relatively unsatisfactory, The methods of preparing the material were time-
consuming, but even more important were the other obstacles encountered. To
ensure the safety of laboratory personnel, it was deemed inadvisable to apply &
potential difference much in excess of 100 volts across P, and P;,  Also, for good
accuracy, it was necessary to keep the spacing of the probes small. The result
was that only a few millivolts were available at the probes. A very high gain was,
therefore, necessary in introducing the signal into the computer. Contact troubles
were encountered at the probes, and this together with the high gain required made
the system impractical because of the high noise level in the problem.

The use of an electrolytic tank was found to give more satisfactory results.
Here, however, d-¢ voltages had to be abandoned because of polarization effects.
It was found to be satisfactory to modulate the voltage applied to the ends of the
tank at P, and P; by means of a eommutator and demodulate the resulting probe
signals by the same commutator after passing the signals through a-¢ amplifiers,
Good results were obtained by this method.

(Omne point should be kept in mind in designing a system of this type,
The orientation of the probes is a very critical factor in the accurate
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solution of a problem. The probes should be designed so that they
may be adjusted accurately to the proper alignment. The actua]
adjustment of the probes in the example discussed here is easily accom-
plished by moving the probe to a region of constant potential distribu-
tion along the y axis (such a region is found near the conductor Py)
and adjusting the probes until u, is maximum and u, is zero.

A class of arbitrary functions that are easily generated by using
solid resistive materials are those funetions of two variables that are
represented by n parameter fami- _
lies. The generation of funetions of Pm"{ff“m
this class is simpler than is the T =%
generation of the velocity gradient
deseribed previously in this section.
In the generation of functions de-
scribed by n parameter families, it »
is not necessary to determine the
gradient of the function but only
the value of the function itself as / Area=A L

= = 1
determined by two dependent vari-
ables of the problem. L;

In order to illustrate the tech- Fi6. 818, Radiation between a point
niques of generating arbitrary fune- and 8 surfnce 4.
tions of two variables, a hypothetical problem involving radiant-
energy transmission will be considered.

As a portion of a problem it is necessary to determine the net amount
of radiant energy received at a rectangular surface of area A from a
point source located at a distance z from the surface. In the problem
to be considered, the distance z varies in an arbitrary manner. A
further requirement of the problem is that the point source is located
along a line normal to the surface and passing through one corner of
the surface. The geometrical configuration is illustrated in Fig. 8-18.

In the figure L, and L; are the lengths of the sides of the rectangle
of area A. The geomelrical factor F is that fractional part of the
radiant energy that strikes the area. Figure 8-19 is a plot of the
geometrical factor F as a function of x/Ls and z/L,.

In order to generate a function such as is described in Fig. 8-19,
it is necessary to generate a voltage proportional to the geometrical
factor F.  One medium that has been successfully used in the gener-
ation of functions of this type is a resistive material in the form of a
thin uniform layer on glass or other noneonducting material, »Lines of
constant ' are drawn on the resistive plate corresponding to the lines
of constant F shown in Fig. 8-19. These lines are drawn with a con-

—_—— R = = — —

-_—
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ducting material such as silver paint. Each of the conducting lines is
connected to a voltage source adjusted to the proper potential corre-
sponding to the particular value of F to be represented by that line.
A servo-driven plotting board is usually used as the positioning
device to position a pickup probe on the resistive material. The
pickup probe replaces the writing pen, and voltages proportional to
z/Ls and z/L, are applied to the servo to drive the probe to the proper
position. The probe then picks up a voltage approximately propor-
tional to the proper value of F, as the resistive material provides
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Fra. 8-19. Geometrical factor F for direct radiation between a point source and a

rectangular area,

approximately linear interpolation between the lines of constant
potential.

The most common material used in the preparation of the resistive
plates is a carbon suspension in lacquer. Normally spray-gun appli-
cation of the material to the glass or plastic plate gives satisfactory
results if care is taken to get uniform coverage.

A second method of generating functions of two variables is by the
use of a tapped potentiometer similar to those described in See. 8-10,
This method of generating functions of two variables was perhaps the
first method to be used for this purpose at an analog-computer instal-
lation, and it was described by Mengel and Melahn® in 1950,

Figure 8-20 illustrates the technique of generating a function of two
variables, using a tapped potentiometer. A family of curves, say
¢(z,y1), ¢lz,ye), . . ., ¢(z,y.), are generated simultaneously for par-
ticular values of the argument y; where ¢ varies from 1 to n. Each of
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the é(z,y:) is connected to a tap of a tapped potentiometer. The
tapped potentiometer is then positioned proportional to the variable ¥,
and the potential at the potentiometer wiper is the value obtained by
linear interpolation between the functions ¢(y) and $(yip1) where
Wi <Y < Y

The values of y; at which the functions ¢(z,y,) are generated (see
Fig. 8-21) cannot be chosen in a random manner. The values of

$lx.y)
¢lx,¥3)

: ¢lx.y)

™
¢lxy)

$lrysl
¥l
$lx.y; sl $lrys) __

i —
| :L.T:V/
¥ servo-driven

Fig. 8-20. Generation of a function of Fra. 8-21. Typical function of two
two variables by using a tapped poten-  variables that can be generated by
tiometer, using & tapped potentiometer.

i must be chosen to coincide with the location of the taps on the
tapped potentiometer.

The manner of generation of the functions ¢(z,y.) is relatively
unimportant. Any of the function-generating equipment previously
described in this chapter can be used for this purpose. It should be
pointed out, however, that each of the ¢(z,y) must be generated
simultaneously when using a tapped potentiometer to generate a fune-
tion of two variables. For this reazon the method is practical only
for those functions ¢(z,3) that can be adequately represented by, at
most, three or four curves ¢(z,y,).

8-12. Conclusions. Although many types of function-generating
equipment are in use or have been proposed, none of the devices con-
structed to date is perfect in all respects. There is still a wide-open
field for the development of better function-generating equipment.
Among the techniques of function generation that need further investi-
gation are magnetic-tape or magnetic-drum recordings. Too little
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work has been done toward adapting these devices to analog-computer
use to date,

In selecting the most desirable function-generating equipment
for a particular computer installation, the type of problems to be
encountered should be considered. It may be helpful, however, to
list some of the more desirable characteristics of function-generating
equipment., These are:

1. A high degree of repeatability

2. Good fidelity of representation of functions

3. The ability to represent rapid changes in the funetion

4, Good frequency response

5. Ease of setup

6. Ease of maintenance
No one function generator will rate as best in regard to all these
characteristics. A compromise must be made in choosing any par-
ticular function generator.

PROBLEMS

8-1. Draw the eircuit diagram for a division circuit using an electronie multiplier.
8-2. Draw the ecircuit diagram for a square-root cireuit using an electronie

multiplier,

8-3. Describe how you could generate the eube root of a function using an
arbitrary-function-generating deviee,

B8-4. Describe the generation of the function sin~! @ using an arbitrary-fune-
tion generator if sin # is available in the computer setup of a problem.

8-5. The equations for the coefficients of the Fourier-series expansion of a func-

tion f(f) are
d+42
i -;L pj(i] l:'l:-u"TT‘:H

by = ,—IILJ-;'-EF Jt) sin '—1;:1! il

where 2p is the interval over which the function is to be expanded. I a graphical
plot of f(t) is available, show a computer setup to determine the Fourier coefficients
a,, and b,.
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CHAPTER 9

MISCELLANEOUS APPLICATIONS OF THE
ELECTRONIC ANALOG COMPUTER

9-1. Introduction. The electronic analog computer has proved
itself a very powerful tool in the solution of ordinary differential equa-
tions. The question naturally arises, “ Are there other problems that
can adequately be handled on the analog computer?” The answer is,
of course, “Yes, but not with as straightforward techniques as are
applied in the solution of ordinary differential equations.”

A partial list of problems solvable on the electronic analog computer
includes simultaneous algebraic equations, partial differential equa-
tions, curve-fitting problems, and the determination of the roots of
polynomial equations. It will be the purpose of this chapter to sum-
marize some of the methods that have been found useful in the solu-
tion of problems in these categories.

9-2. Simultaneous Algebraic Equations. The labor involved in the
manual solution of higher-order systems of algebraic equations led
engineers to attempt the solution of such systems on analog computers.
The most straightforward technique for the setup of linear algebraie
equations on an analog computer is to transform the set of simultane-
ous algebraic equations into a set of linear differential equations hav-
ing, as a steady-state solution, the solution of the original algebraie
equations.

A set of simultaneous linear algebraic equations has the form

)+ @l + ° " a4+ 0 +ﬂj..I.+bi=ﬂ
Ty + aiete + ¢ - - F @i+ - F GiaZa + i =0 (9-1)
GuZ1 + Gasta+ * " " +Gaiit+ " " + OGanZnt+ b =0
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The differential equations for the analog-computer solution of Eqs. 9-1
are formed by equating each of the n equations to the time derivative
of the variable z;, where 1 < i < n in Eqs. 9-1. The resulting system
of differential equations is

Aufi +afs+ * ° C F@Ei+ 0 0+ GaZa + by = —%

: de.
aZ1 + G + - - - Fa@idi + - 4 aate + b = - (02

. ds.

@uZy + GasZz + 0 Fauti + 0 F GuaZa + by = i
If the computer solution of Eqs. 9-2 is stable, the steady-state values
of the computer variables z,, . . . , z, are the solution of Egs. 9-1,

since in the steady state all the derivatives in Eqs. 9-2 are equal to
zero. The odds are very great, however, that the solution will not be
stable. More specifically, instability will result if the real part of the
roots of the characteristic equation of Eqs. 9-2 are not all negative.
If instability results, the equations can always be manipulated to
obtain a form giving stability,! but the amount of labor involved in
the manipulation of the equations can be very great. In fact, the
labor required to ensure computer stability can be almost as great as
that required to solve the algebraic system on a desk caleulator by
the best available techniques.?

A method of setup of algebraic equations that ensures computer
stability without algebraic manipulation of the system does exist.
The method is described in detail by Gephart* and has been applied
at the computation section of the Aeronautical Research Laboratory
at Wright-Patterson Air Force Base, Ohio. The method is far from
perfect, though, as excessive equipment is required in the setup. In
general, it required 2n potentiometers to adjust the coefficients of the
problem, where n is the number of parameters in the algebraic system.
(iephart’s method ensures stability of the computer solution; however,
the accuracy obtainable in using the scheme is to a great extent deter-
mined by the system of equations being solved. No attempt will he
made here to describe the method in detail; the interested reader will
find an adequate description in Gephart's work.?

From the experience the author has had in attempting to solve
systems of algebraic equations on the electronic analog computer, he
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strongly recommends against the use of the analog computer for the
solution of algebraic equations. Computers such as IBM card-punch
machines and other digital devices are very well suited to the solution
of simultaneous linear algebraic equations. Indeed, the desk ealeu-
lator shows up well in comparison with the analog computer for the
solution of algebraic equations.

9-3. Partial Differential Equations—Introduction. More success
has been encountered in the solution of partial differential equations
on an analog computer than in the solution of simultaneous algebraie
equations. Here a direct approach to the problem is impossible, as
the analog computer is restricted to integrations with respect to one
independent variable. In solving systems of partial differential equa-
tions, some method must be utilized that will transform the partial dif-
ferential equations into ordinary differential equations., Two schemes
are commonly used: (1) the formation of an eigenvalue problem by
the method of separation of variables, and (2) the application of dif-
ference techniques to form a difference-differential equation. The two
technigques will be discussed in some detail in subsequent sections.

9-4. The Solution of Eigenvalue Problems. Frequently linear par-
tial differential equations can be readily reduced to a set of ordinary
differential equations of the eigenvalue type by the method of sepa-
ration of variables. In turn, many eigenvalue problems can be readily
solved on the electronic analog computer.

The ordinary differential equations arising from partial differential
equations by the applications of the method of separation of variables
have both initial and final conditions to be satisfied, rather than initial
conditions alone. It is neeessary, in the solution of the problems, to
determine the eigenvalues, or the characteristic numbers, that permit
the end conditions of the problems to be satisfied. The solution of
the eigenvalue problem for a particular eigenvalue is termed the
eigenfuneiion and is a normal mode of the solution of the partial dif-
ferential equation from which the eigenvalue problem is derived. The
solution of the partial differential equation is formed as a series approxi-
mation by the proper combination of the eigenfunctions.

Sinece the solution of partial differential equations by the method of
separation of variables leads to a series-type approximation, it may
seem to the reader that the method is quite tedious and of little value.
It is very true that the solution is considerably more tedious than the
solution of ordinary differential equations on the analog computer,
yet there are many partial differential equation problems for which
the method of separation of variables, when applied to the computer
solution of the problems, proves very useful.
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_ l-'re-c_;uentlj.r the analog-computer solution of differential equations
involving eigenvalues is practical when it is not practical or possible
to E_m]ve the systems by analytical means. Conditions that make ana-
lytie solution of eigenvalue problems either difficult or impossible are:

1. The high order of the equations
2. The presence of variable coefficients

3. The number of solutions desired for different parameters of the
problem

There are several types of eigenvalue problems for which the feasi-

bility of analog-computer solution has been investigated * and these
nre:

; ].' Second-order equations with simple homogeneous boundary con-
ditions

3. Complex second-order equations with integral boundary con-
ditions

3. Fourth-order equations with simple homogeneous boundary con-
ditions

4. Eigenvalue problems involving a semi-infinite range of the inde-
pendent variable

OF these four forms of eigenvalue problems, the first three can usually
be solved on the analog computer with little difficulty. The fourth
type, problems involving a semi-infinite range of the independent vari-
nble, can be handled if an analytic asymptotic solution of the prob-
lem is available or if, as sometimes happens, the problem solution
u]:lpl:{'}ﬂf:hﬂﬂ its boundary values rapidly even though the range of inte-
gration is from zero to infinity. The discussion given below will make
clear the limitations of the method of separation of variables for prob-
lems in these categories,

The dc:trcrminntinn of the eigenvalues of a problem on an analog
romputer 18 necessarily a process of trial and error. There are always
present both initial and final values to be satisfied. The operator has
+II|1T_=.~::I; control of the initial conditions of the problem but has only
!mllre:‘:t control of the problem end conditions. This indirect control
s by means of varying the eigenvalues of the problem until a particu-
lar set of values of the characteristic numbers is found that causes the
end conditions to be satisfied. The process is very simple when only
one parameter in the system must be varied in order to satisfy the
]H}'llll'l-l:]ﬂ.l'}" conditions of the problem. If two parameters must be
varied simultaneously to satisly the problem end conditions, a scheme
can usually be found that will permit a rapid determination of the
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value of the characteristic numbers that will produce a solution. If
three parameters must be determined simultaneously, the end con-
ditions can be determined only with great difficulty, if at all, and with
a large expenditure of time. If four or more parameters or eigenvalues
must be varied simultaneously in order to satisfy the boundary or end
conditions of the problem, then the task is completely hopeless for the
machine operator. A brief discussion of the four classifications of
problems listed above as solvable on the electronic analog computer
will enable the reader to visualize the difficulties encountered in the
solution of each class of problems.

A second-order equation with simple homogeneous boundary con-
ditions usually has one boundary condition to be satisfied at each end
of the interval of integration. Correspondingly, there is only one
eigenvalue or characteristic number to be varied in order to cause
the final value of the problem to be satisfied. The operator can set
the initial condition on the computer and ean directly see the effect
on the problem solution of varying the characteristic number of the
eigenvalue problem. Similarly, a fourth-order eigenvalue problem
having simple homogeneous boundary values has two boundary con-
ditions specified at each end of the interval of convergence. Two
problem parameters must then be varied in the system to obtain con-
vergence, One of these is usually the eigenvalue, and the aemndl is
frequently an unspecified initial condition. Here success of solution
can usually be obtained.

If the dependent variable of an eigenvalue problem is a complex
function, the number of initial conditions and end conditions in the
problem is doubled over the case of a real dependent variable in the
problem. For this reason, a complex second-order eigenvﬂ.h_ze problem
offers approximately the same order of difficulty n snll?t.mn on the
analog computer as does the fourth-order equation with simple homo-
geneous boundary values.

The accuracy of solution of eigenvalue problems and the amount of
labor required to attain the problem solutions differ wi::ll:l;lr_, depend-
ing upon the information that is needed in the problem solution. The
differences of labor that can exist in the solution of eigenvalue prob-
lems can be illustrated by pointing out that in many problems only
the eigenvalues, or characteristic numbers that allow t.he‘ boundary
conditions to be satisfied, are of interest. Examples of this type are
frequently encountered in vibration and stability atfuf:iiea._ Inf-::r-rml.-
tion as to whether a motion will grow or deeay with time is available
from the eigenvalues without obtaining the series solution of the par-
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tial differential equation. Fortunately also, the first few modes of
the vibration are usually the most interesting, so that the character-
istic numbers of only a few eigenfunctions need be found.

In other problems it is necessary to determine the series solution of
the partial differential equation representing the problem. In these
problems, it is necessary that the eigenfunctions or normal modes of
the problem be recorded and later combined to form the problem
solution. Theoretically, there are an infinite number of normal modes
in the solution of & problem. Frequently, however, sufficiently aceu-
rate results can be obtained by combining only a few of the normal
modes. In general, it is not possible to determine a large number of
normal modes on the analog computer, since large values of the char-
acteristic numbers on the computer correspond to marginal computer
operation, because of high gains in the computer setup and correspond-
ingly high frequencies in the eigenfunctions. In many problems, an
asymptotic solution does exist that will accurately determine the higher
normal modes in the problem solution. In these cases the analog
computer can be utilized to determine the first few modes of the solu-
tion, and these results together with the asymptotic solutions of the
higher modes permit a complete determination of the problem. One
interesting use that can be made of the analog computer is to deter-
mine for which modes of a problem an asymptotic solution of the
problem is valid.

No attempt will be made herein to treat the method of separation
of variables in any detail. The method is adequately treated in any
number of texts concerning themselves with the solution of partial
differential equations.*? Similarly, no specific examples of eigenvalue
problems will be carried out in this work. The technique of problem
setup is very simple once the partial differential equation has been
reduced to a form involving only total differential equations. Several
illustrative examples of the solution of eigenvalue problems are given
in the literature.!  Also included in the literature are the comparisons
of computer results to analytic results obtained for these problems,

9-5. Replacing Partial Derivatives by Finite Differences. Obtain-
ing a series solution of partial differential equations by the method of
separation of variables is a fairly effective means of solving partial
differential equations on an analog computer, This approach is some-
what tedious, though, and a more direct approach offers some advan-
tage in the solution of some problems. Such an approach has been
effectively used and involves the substitution of finite differences for
some of the partial derivatives in the problems.® The difference-
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differential equations obtained by replacing some of the partial deriva-
tives by finite differences in the problems are then solvable on the
analog computer. '

The methods of expressing derivatives in terms of finite differences
are very well deseribed in books on the subject of numerical analysis.®
The expressions for the representation of differentials as finite differ-
ences will therefore be stated here without proof.

Assume that a dependent variable y(z,!) is a function of distance 2
and time . Utilizing the methods of finite differences, instead of
measuring y at all distances z, it is expressed only at certain stations
along r, say xp, T1, . . . , Tn. For convenience, the stations can be
chosen at equal increments of x such that the distance between sta-
tions is Ar. An approximate expression for the partial derivative at
r = 1y can be written as

ay

~ W1 — Ha
ol = (9-3)

» Az

The degree of approximation in the above expansion is readily seen
to be a function of the incremental size of Az, as Eq. (9-3) is, in the
limit, the definition of the partial derivative with respect to r as
Azr — 0. Similarly,

ﬂ!.l' 1{. = yn—1.
3z |y == (9-4)
and the higher derivatives may be expressed as
ﬂtﬂ'! - a1 — 2.!.‘5 '+' -
oz s (a2)? “3
aty | _ Ynsr = 3Yn + 3lnot = Yn-z
art |y 34 (ax)? -5
Ayl Yner — ey + By — a1 + Yes |
3t @2)" 3

Equations (9-4) to (9-7) can be used to replace the corresponding
partial derivatives in a system of partial differential equations. In
this manner a partial differential equation expressed as a function of
distance r and time { can be reduced to a system of ordinary differ-
ential equations with time as the independent variable.

For systems restricted to one spatial degree of freedom y(z,1), the
partial differential equation will reduce to a system of equations y,(t),
wa(l), . . . ,ya(t). The initial conditions of each equation y,(t), . . . ,
yu(t) must be specified and are usually known from the physical prob-
lem. In order to clarify the application of this technique the setup of
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the problem of a vibrating string will be demonstrated. The problem
is as specified in Fig. 9-1. For simplicity, the vibration is restricted

¥

"

g X X3 I —-—= === = = Xsi=] Xu

Fic. 9-1. A vibrating string.

to motions along the y direction Clearly, the displacement y is a
function of z and {. The equation of motion of the system is

a*y  a'y
@5 = ap (9-8)
Tg
h -
where a= 3 @
T = tension in string (9-9)
g = gravity

W = weight of string per unit length

Substituting the value of #%/dz? from Eq. (9-5) into Eq. (9-8) gives
the differential equation of motion of the point y,

) 2
;—1:, (Mivr — 208 + Yia) = tfi—?,ll (9-10)

The equations of all interior points have this same form: however,
application of the boundary conditions of the problem simplifies the
equations of points #; and z,_,. In the problem being considered, both
ends of the string are fixed, and therefore the value of y, and y. must be
sero at all times,  Applying the end conditions, Eq. (9-8) becomes

d!
ags v = 2p) = (9-11)
i d*Yn—
and E;{_Eyn—l + Yaz) = _j.t‘l'_l (9-12)

at stations x, and z,_,, respectively. The circuit diagram of the sys-
tem can now be prepared from Eqs. (9-10) to (9-12) and is given in
general form in Fig, 9-2,

In this problem, if a is constant over the entire length of the string
and if the initial displacement of the string is symmetrical, the prob-
lem setup can be simplified by considering only those stations to the
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left or right of the mid-point. The representation of partial differ-
ential equations by difference techniques uses a large number of com-
puting amplifiers; thus, all problems should be very ecarefully checked
for symmetry to reduce the size of the computer setup, if possible.
The evaluation of initial conditions at each station of the problem
can be a considerable task in some problems. Suppose forces are

Initial condition =y,10)
- 1

[ —

?‘i
S
——m e =

) P
I/L@

Initial condition =y, 1 00)

2‘--1
__r-_
(m)—= 2t . , I\ i
+ h 0 E ] P n=1| I q rj-j ‘
C Axt Tn-2 1 V

Fia. 9-2. General form of the setup for the gimple vibrating-string problem.

applied to various stations along the string and suddenly the forces
are released at { = 0. For this form of excitation, it is necessary to
determine the initial displacements from the force distribution. This
may be done analytically in many problems; however, much time can
usually be saved by making the determination on the computer. Teo
determine the initial conditions, it is necessary to apply forces to each
station corresponding to the conditions at { = 0 and adjust the initial
displacements until the problem remains in a quiescent state when
the computer is placed in operation. This trial-and-error adjustment
compares closely to Southwell's relaxation method,'® used extensively
in the numerical solution of partial differential equations.

The technique of replacing some of the partial derivatives of a
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problem with difference equations has been demonstrated here for a
problem having a single spatial degree of freedom. The principle of
replacing partial differences with finite differences applies equally well
to systems having two or three spatial degrees of freedom. The only
complication that arises in the solution of problems having two and
three spatial degrees of freedom is the size of the computer setup. For
problems having two and three spatial degrees of freedom, the com-
puter setup increases in size approximately as the power of the number
of degrees of freedom, as a differential equation must be solved at each
point in a lattice formed by replacing the partial derivatives by finite
differences at increments in r, y, and z.

The University of Michigan is presently designing an analog com-
puter with a large number of amplifiers specially for the purpose of
carrying out an investigation of the solution of partial differential equa-
tions of types that are impossible to solve on their existing equipment.

For additional examples of problems involving partial differential
equations which have been solved on the computer and a treatment
of the accuracy obtained, the reader is referred to an article by Howe
and Haneman.*

9-6. Computers as Curve-fitting Devices. Occasionally there arises
a need for determining the coefficients of a system of differential equa-
tions whose response is known. Such a requirement frequently arises
in the field of aerodynamics and particularly in the analysis of flight-
test data for aireraft and for guided missiles. The general form of
the aerodynamic equations is known in these applications; however,
the magnitudes of the aerodynamic coefficients are only approximately
determined from the design configuration of the vehicle. Flight-test
data from experimental models provide exact response characteristics
from which modifications of the aireraft or missile may be specified
or auxiliary equipment such as autopilots may be precisely designed
for optimum performance. In order to make the desired system
studies on an analog computer, it is necessary first to obtain the cor-
rect aerodynamie coefficients of the problem.

Analytic methods of determining the coefficients of a system of dif-
ferential equations for which a graphical solution is known are avail-
able for linear systems with constant coefficients. The labor involved
for higher-order systems becomes very great, however, and if non-
linearities are introduced, the methods become useless. Analog com-
puters have been found very valuable as an aid in the solution of this
type of problem."

In determining the coefficients of a system of differential equations,
the general form of the problem is set up on the computer using the
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best available estimate of the aerodynamic coefficients, The best
operating procedure seems to be to investigate first the effect of each
coefficient of the problem on the system response. After becoming
familiar with the effectiveness of each parameter, it 1s then possible
for the computer operator to vary the coefficients systematically, to
produce a reasonably good fit of the curves obtained from the experi-
mental data. A large plotting board is a helpful device in accomplish=
ing the curve-fitting job, as the desired response may be plotted on a
graph sheet and covered with a transparent overlay or tissue that
may be discarded upon becoming cluttered with trial solutions.

Another technique of eurve matching that has been found useful
makes use of an automatic function generator. The curve that is to
be matehed is generated on the function generator,  An error signal 18
then obtained by subtracting the voltage representing the desired fune-
tion from the computer results. This form of representation allows
the application of curve-fitting criteria such as the method of least
squares, A curve-fitting eriterion similar to the method of least
squares but better adapted to use on an analog computer is the inte-
gral of the absolute value of the error.  In applying this error criterion,
the difference between the desired and trial curves is rectified by using
diodes and the resulting voltage 1s integrated. Adjustment of the fit
is then made until the output of the integrator is a minimum. The
method minimizes the area between the two curves and provides a
very good means of determining a best fit.

The ability to fit experimental data on an analog computer has
opened a large field of application for analog computers. An auto-
pilot or other automatic control system can be evaluated and adjusted
by coupling it to a computer almost as exactly as ean be accomplished
by actual flight test. The computer can be used in all phases of the
system development. In early stages the entire system usually is
simulated mathematically, while in the later stages of development
actual hardware is sometimes introduced into the setup to determine
more exactly the system response. Tremendous saving of time and
money has been realized in recent years by the application of these
techniques.

9-7. The Roots of Polynomial Equations. A class of problems that
can be solved on an analog computer is the determination of the roots
of polynomial equations. These problems are important in many
fields of application and in particular in the evaluation of servomecha=
nism systems by classical methods.

In the past, little use has been made of the analog computer for the
determination of the roots of polynomials. Probably the greatest
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reason for this lack of use is that the roots of polynomial equations
can be very readily determined on digital computers. Also, the use
of the analog computer for determining the roots of polynomial equa-
tions is impractical if there is only one or just a few polynomials to be
solved, because of the computer setup and check-out time required.

In order to understand the method of determining the roots of poly-
nomials on an analog computer, it is necessary to discuss the nature
of polynomial equations and also to introduce Nyquist's eriterion to
the reader.

Consider the polynomial

Wiz) =ap+ aiz + a2 + - - - + a.z* (9-13)
where z may be a complex quantity of the form
z = re'' = r{cos @ 4 7 sin f) (9-14)
and where the a’s similarly may be complex quantities of the form
a; = cei¥ (9-15)

From Eq. (9-14) it follows directly that the powers of z in the poly-
nomial W ean be expressed as

2t = r%™ = r*(cos 20 + j sin 20)

2" = rrei™® = r*(cos né + j sin nd) (9-16)

Substituting Eqgs. (9-14) and (9-16) into Eq. (9-13) gives a new expres-
ston for the polynomial W:
Wiz) = as + ayr(cos # + jsin 8) + ar?(cos 20 + 7 sin 26)

+ - o 4 awr(cos nd + j sin nd) (9-17)

Collecting the real and imaginary terms of Eq. (9-17) gives the
Cxpression

Wiz) =as+arcosd 4+ asrecos28 + - - + + a,r" cos né
+ jlawr sin @ + asr® 8in 20 + - - - 4+ a,r sin nd) (O-18)
or Wiz) = ReW 4+ Im W (9-19)

where Re W signifies the real part of the polynomial W and Im W
signifies the imaginary part of W.

In order to determine the roots of a polynomial it is necessary to
determine the value of z that causes both the real and imaginary parte
of the polynomial to vanish simultaneously. It is readily apparent
that, if Eq. (9-18) is set up on the analog computer and Re W is
plotted against Im W on a plotting board, it will be obvious when a
#ero of the polynomial has been found.
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In order to understand the method of a:*]:temlftical:ge ;ﬂﬁm
ial, it i t the re
the zeros of the polynomial, it 18 necessary Lha
wi:: Nyquist’s criterion, which states, in part, that the num':;r :
net encirclements of the origin in the W plane equa:la the num rm
geros encircled by a closed path in the z plane rru;m:s the :mm p
1 i ince there can no poles in
f voles encircled in the z plane. Since the n b
imﬁumm equation, the statement of Nyquist eriterion rf.-:duces toa
gimple statement concerning the number -::f_ r_lmt:ﬂ in a given reg:t-]:;n
and the number of encirclements of the orgin in the plane of the
iﬂl. - » " L] * # -
pollin:?::er to prove the portion of Nyquist's c-:ntenun with which this
section is concerned, consider the polynomial in 2
W(z) = @uz® + @uz™ '+ + @0

z, are the roots of Eq. (9-20), then the equation can be

(9-20)

If 1, T2 o ¢«
rewritten as

Wiz) = aalz — 21)(z — 23)(z — z3) -+ ¢ (2 — zw)

i ical i i the Nyquist criterion
Figure 9-3 gives a geometrical mter;;::rt.nt:,]fx; ;t;lrnmﬁ air?n e '
in Eq. (9-21). _
If a closed curve R is drawn in
the z plane, it will enclose any
number of roots from zero to n.
Nyquist’s criterion states that the
number of encirclements of the
origin in the W plane is equal to
the number of roots inclosed in
the z plane. This can be seen by
considering Fig. 9-3. In Fig. 9-3
a vector (z — 2) is drawn t'rum
each of the roots z to a point 2

on the closed curve B. The angle ¢: is the angle thrnughdwtl;lic]:ﬂmh
of the vectors (z — 2/ is rotated as z progresses once aroun e closed

path L.
Consider again Eq. (9-21).

(9-21)

Z plane R

Fia. 9-3. Geometrical interpretation of
the Nyquist eriterion.

From Fig. 9-3 it can be seen that

- = [sfs
(2 — 21) = Lnddn (2 — 22 (9-22)
{3 - 2]} - L:Ii*l: ['! = z‘ﬂ} — Lliﬁ.

olynomial to &
i rds, each vector drawn from a root of the p _ ..
ﬁ;ﬂl:l:?)& :xprmd as a length L; and an angle ¢.. Substituting
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Eqs. (9-22) into Eq. (9-21) gives the expression
Wi(z) = aulalals -« * Lol + ¢+ ds+ -« - + da  (9-23)

From Eq. (8-23) it is readily apparent that the plot of the polynomial
in the W plane, as z forms a closed path R, is formed as a vector of
magnitude

W(z) = aplalsLs - * - L,
having a phase angle

(W) =1+ ds+da+ - - + &, (9-25)

Referring again to Fig. 9-3, it is apparent that the net contribution
to the total phase shift in the W plane &(W) is 2= for those roots
enclosed by the curve R and is zero for those roots outside the region
formed by R. Thus the number of encirelements of the origin in the
W plane is equal to the number of roots encireled by a closed path in
the z plane. This statement of Nyquist's criterion gives a very rapid
means of determining the region in which the roots of a polynomial lie.

Figure 9-4 shows the computer setup of a fourth-degree polynomial.
In the figure the scale factor has been chosen such that 100 volts is
equal to 100 |r|. The absolute value of r is then restricted to lie in
the region 0 < |r| < 1. A satisfactory method of procedure in deter-
mining the roots is to first set |r| = 1 and allow 8 to vary through
2r radians. From the plot of W formed as ¢ varies from zero to 2w,
the number of roots in the region 0 < |r| < 1 can be determined
by the number of encirclements of the origin.

The entire region |r| < 1 can thus be rapidly searched for the
number of roots known to exist in the region. The real part of the
root is |r| and the phase angle of the root is the angle wf = # that
causes both the real and imaginary parts of the polynomial to vanish
simultaneously.

After all the roots of the polynomial that lie in the region 0 < |r| € 1
have been determined, a simple transformation 4 = 1/z can be made
in the polynomial in 2, giving a polynomial in u, P(u). The roots of
W(z) lying in the region r > 1 can be found by determining the roots
of P(u) in the region 0 < |r| < 1 and inverting these roots. The
labor inveolved in making the substitution u = 1/z to determine P(u)
from W(z) is practically negligible, as the new polynomial P(u) has
the same coefficients as W(z) except that the coefficients are in reverse
order; i.e., the coefficient of the zero-power term in W(z) becomes the
coefficient of the highest power of u in the new polynomial P(u), as

(9-24)
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illustrated below. Making a substitution u = 1/z in Eq. (9-13) gives

e 1 1 1
1} (—)=ﬂn+ﬂ1a+ﬂti‘1+"‘+ﬂnﬁ {9'26}

L]

= 10082 sin 2.t
=100 sin dwi

Multiplying the equation through by u® gives

Plu) = ul¥W (;ll) = @agu" 4+ au* 4+ - - - 4 g, (9-27)

If some roots have too small an absolute value of z (or u) to permit
accurate evaluation by the methods described above, a substitution of
the form z = ay or u = ar can be made to allow those roots to be
properly determined.

9-8. Conclusions. In this chapter the solutions of a few problems
that do not fit in the category of ordinary differential equations have
been discussed. The treatment here has been for the purpose of mak-
ing the reader aware of some of the efforts that have been made to
extend the usefulness of the electronie analog computer. It should be
emphasized that the most important applications of such a computer
are in the solution of ordinary differential equations and will probably
remain there because of the inherent capabilities and limitations of the
clectronie analog computer.

Many investigators have examined the possibility of utilizing the
analog computer in the solution of partial differential equations.
Among the most significant research efforts in this field are those
conducted at the University of Michigan. The results of a portion
of the investigations carried out at the University of Michigan are
included in the References,** together with other articles of significance
reporting the results of research in the solution of partial differential
equations, 1518

Curve-fitting techniques have probably been utilized by every com-
puter installation that concerns itself with the solution of problems
imvolving aerodynamic studies. The techniques of curve fitting
deseribed in this chapter were described in a paper by Teague and
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Fia. 94, Cireuit diagram for determining the roots of a fourth-degree polynomial.
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3 ‘;'_., ‘g g Gilpin.'* A curve-fitting technique that is useful in the fitting of an
O % E E: analog-computer solution to data in the form of discrete points is
Su g| 8| 8 % g described by Murphy.' This technique is highly specialized and will
- LT ) not be discussed further in this book.

The use of the analog computer in the determination of the roots
of polynomial equations was first discussed in a paper by Bauer and
Fifer'" of Reeves Instrument Corporation. The origin of the basic
method goes back considerably further, however. In 1950 a contract
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was let by the U.8. Air Force with Reeves Instrument Corporation
for the development of a special-purpose analog polynomial evaluator.
Prior to this time a prototype of the polynomial evaluator had been
constructed by Warshawsky and deseribed in a thesis." It remained
for Bauer and Fifer to recognize the possibility of implementing the

scheme on the general-purpose analog computer.

PROBLEMS

9-1. The equation of unidirectional heat flow through a eontinuous homogeneous
medium is

u _ ) o
il azd

where u = temperature = u(z,l)
{ = time
z = distance
k = thermal conductivity /(density X specific heat)
Write the difference-differential equations of heat flow for the temperature distribu=
tion in & medium between two infinite slabs. The slabs are held at temperatures
T, and T's, respectively. Use five points s, 21, . . . , 2 in representing the partial
differential equation as a difference-differential equation. Assume that at { = 0
the temperature throughout the medium is uniform at temperature ul(z,0) = T
9-2. The function
fix) =1 0=
fiz) = =1 r <

has & Fourier-series expansion
A in T 4. )
fizx) = ;(EII'L T -+ Bin 4 +

Show & computer setup to plot f(x) using the first three terms of the X pansion.
9-3. In determining the roots of the fourth-degree polynomial in 2

Wiz) = 2* + 1.52° — 0.5z + 0.75z — (.05

hy means of the computer setup shown in Fig. 9-4, it iz found that a plot of Re 2
Im z for |z| = 1 encircles the origin three times as wf varies from 010 2. {a)
many of the roots of the polynomial have magnitudes [+ (Re 2)* + (Im 2)¥
than unity? (b) How many roots have magnitudes greater than unity? (g
What is the auxiliary polynomisl P(u) that must be set up on the computer
determine the magnitude and angle of the roots of P(z) that are outside the
circle? (d) If it is determined that a root of the auxilisry polynomial F(u)
1y = —0.5, what is the value of the corresponding root 2,7
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CHAPTER 10

ANALOG COMPUTER COMPONENTS AND
COMPUTER CONTROL

10-1. Introduction. In this chapter a few of the component parts
of the analog computer will be discussed. No attempt will be made
to treat the components in great detail, but only those characteristies
which direetly affect the machine operator will be considered. Topies
to be considered are the stabilized d-¢ amplifier, potentiometer-setting
schemes, operate-reset systems, and overload warning systems. The
discussion will be concluded with the application of previously dis-
cussed techniques to simple problems involving the automatic control
of analog computers.

10-2. Stabilized D-C Amplifiers. In the early days of the analog
computer, the d-¢ amplifiers in use were based upon design techniques
which had been known for some time. In the computer application,
however, the drift associated with d-c amplifiers was found to be par-
ticularly troublesome. The constant effort to improve the accuracy
of analog computers was focused upon two points: to improve the
d-¢ amplifier, and to obtain more precise components to use as feed-
back and input impedances. The improvement of passive components
was of little value, however, until the errors associated with the ampli-
fier were reduced.

The drift in d-¢ amplifiers arises from several sources, Among the
main factors contributing to drift are variations in heater voltage,
particularly in the early amplifier stages; fluctuations in the power-
supply voltages; variations in tube characteristics; and amplifier grid
current, The improvement in amplifier characteristics was carried out
in two ways. First, circuitry was refined to inerease the amplifier gain
and particular care was taken to reduce drift due to the causes men-
tioned above, The resulting amplifiers were good but still did not
allow the computer operator freedom from oceasionally balancing the
amplifiers in order to obtain highly precise results, The second and
most significant improvement came about when Goldberg! introduced
a method of stabilizing the d-¢ amplifier by an external means,
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The automatie-balance system of Goldberg is incorporated in the
REAC amplifiers. Balance systems that operate in a similar manner
are present in all the precision computers being manufactured sl
present. A simplified schematic of a REAC amplifier as used in the
(=101 model ID computer is shown in Fig. 10-1. In thiz cireuit the
effects of drift voltages are compensated for by the use of an auxilinry
balancing amplifier. The voltage at the grid of the first stage of the
amplifier (a triode) is filtered, and the resulting voltage is modulated
by means of a synchronous vibrator. The modulated d-c signal is
amplified in a drift-free a-c amplifier and demodulated by the syn-
chronous vibrator. The error signal obtained from the a-¢ amplifier
and filter i3 then introduced to the grid of a second triode, cathode
coupled to the input tube. The effect of the filtered signal obtained
from the a-c amplifier is to vary the grid voltage of the second half
of the input triode in such a manner that the average potential of the
grid of the first triode will remain approximately at zero.

A better concept of the manner in which the drift voltage of an
amplifier is reduced by the stabilizing eircuit can be gained by con-
sidering the action of the circuit with an assumed positive potential
at the grid of the input tube V101 (Fig. 10-1). The voltage at the
grid of V101 is modulated by the synchronous vibrator, and the result-
ing signal is amplified by the a-c amplifier which consists of tubes
V104 and V105. The signal at the output of the a-c amplifier is
demodutated by the action of the second half of the synchronous
vibrator as it alternately grounds and opens the eircuit connected to
the junction of C110 and R128. The demodulated signal is then
filtered by the action of C111 and R128. It is important to note
here for later reference that the time constant of the filter is very
long (25.5 sec).

The filtered demodulated signal is introdueed to the second grid of
V101 and is of opposite polarity (negative) to the drift voltage that
was assumed to exist at the first grid of V101. The stabilizing signal
causes the cathode potential of V101 to deerease and thus causes the
imput triode to conduct more heavily, producing a larger signal at
the output of the amplifier. The negative feedback through the
external 1-megohm resistor then drives the input grid of the ampli-
fier back toward zero, reducing the initial error voltage at the grid of
the amplifier.

An important feature of the auxiliary stabilizing cireuit is that the
over-all gain of the d-¢ amplifier is effectively increased for low fre-
quencies by the gain of the a-c amplifier. In summary, it can be
stated that the low-frequency portion of the signal is amplified both
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by the a-c and d-¢ amplifiers, whereas the higher frequencies are ampli-
fied mainly by the d-c amplifier.

The d-c amplifier circuits in use today vary considerably in their
configuration. However, the introduction of automatic stabilization
has made feasible low-frequency gains in the order of 10® to 6 % 10%
rather than the 20,000 to 200,000 normally achieved in unstabilized
computer amplifiers. Reference to the derivation of the transfer fune-
tion of the high-gain amplifier in Chap. 2 will show that, with gains
over a million, the ability of the amplifier to perform accurately the
operations of summation and integration rests almost entirely on the
quality of the resistors and condensers available as input and feedback
impedances.*

Consistent improvement in the quality of the passive components
has been made. Plastic condensers, such as polystyrene, are the most
commonly used in forming an integrator and have leakage resistances
as high as 10" to 10" ohms. These may be matched to a standard
to considerably better than 0.1 per cent of the nominal value, The
resistors commonly used are either noninductively wound, wire-wound
resistors, or stabilized deposited-carbon types with a low temperature
coefficient. The deposited-carbon types may be matched to closer
than 0.1 per cent, but superiority still lies with the wire-wound resis-
tors, as their temperature coefficients are lower than the best deposited -
carbon resistors available. It is common practice with some computer
manufacturers to pad each resistor to obtain an extremely close toler
ance in resistance value and to group all resistors on & common panel
to reduce temperature effects, Herein lies one of the greatest argu-
ments for wiring all components internally in the com puter rather than
patching them externally.

In the introduction to this chapter, it was indicated that only those
features of machine design having a direct bearing upon the computer
operation would be discussed. An understanding of the principle of
operation of the stabilized d-c amplifier is necessary to make its limi-
tations clear. If a d-c amplifier is operated over a range of voltages
which does not overload the amplifier, the grid input is at all times
very close to zero potential because of the very high gain of the ampli-
fier. If the amplifier is caused to overload, the voltage at the grid of
the amplifier no longer remains close to zero, as the voltages applied
to the grid through the feedback and input impedances are no longer
cqual and opposite in sign. It may be recalled, by once again referring
to the diagram of Fig. 10-1, that the a-e amplified balancing signal is

* Bignificant errors are still presont bocause of phase shift and finite adder band-
width. These errors are discussed in the next seotion.
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filtered before being applied to the second triode of the d-¢ amplifier.
The time constants commonly used in this filter are of the order of
10 to 25 sec. The result is that, if an overload occurs, a large signal is
sent to the filter and considerable time must be allowed for the a-e
amplifier to recover. The time it takes for an amplifier to recover
from an overload is to some extent a function of the time the amplifier
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1""""l. o =
Tao ather
o o amplifiers
\'H. &3 o ’
e o
T Pulse
| =AANA amplifier """":
== ]
. 0 o | 0
T verload
., o o indicators
1’_4\\ ’/D‘ e @ T'D ITIHEIH

= overload
Commutator  _| é circuit

Fia, 10-2. Block diagram of the Ingerson stabilization system,

remained overloaded. In the operation of problems on a computer
it is important to keep in mind that a temporary overload will have
much more detrimental effects upon the problem results when using
stabilized amplifiers than when unstabilized amplifiers are used. This
is due to the long time constant of the filter circuit in the stabilized
amplifier,

In a few applications, the nonlinear characteristies of amplifiers,
when allowed to overload, are desirable in the design of circuitry to
perform specific functions. Typical of these operations is the use of
a high-gain amplifier to cause a diode to conduct or be cut off in a
very sharp manner. In applications where overloading is desirable,
the automatic-balance feature of the amplifier must be made inoper
ative. A switch is sometimes provided on the amplifier chassis
allow the convenient choice of manual or automatie-balance operation,
If the automatic-balance system is disengaged, the operator must t
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monitor the amplifier oceasionally and make any balance adjustments
NEeCcessary.

In 1951, Ingerson® modified the system of Goldberg to a consider-
able extent. He eliminated the chopper and a-c amplifier from each
individual amplifier and replaced these with a motor-driven eommu-
tator and single pulse amplifier capable of stabilizing several amplifiers.
For a large number of amplifiers the system offers considerable econ-
omy of construetion.

A block diagram of the stabilizer circuit developed by Ingerson and
used on the L-3 Goodyear computer is given in Fig. 10-2. The volt-
age at the grid input of each d-c amplifier is filtered and is then sampled
three times per second by a motor-driven commutator. The pulses
obtained from the commutator are amplified by a pulse amplifier, and
the resulting signal is reintroduced to the proper d-¢ amplifier by means
of the commutator. The output signal from the commutator is filtered
before being introduced to the d-c amplifier in order to provide a d-c
signal to the amplifier.

10-3. Inherent Errors of D-C Amplifiers. In Chap. 2 the transfer
functions of integrating and summing amplifiers were derived; how-
ever, little was said at that time about the imperfections of the am pli-
fiers. It will be the purpose of this section to discuss these limitations
and show the effect they can have upon problem solutions.

The transfer function of a high-gain d-c amplifier with feedback was
shown in Sec. 2-2 to be

b _ _ ¥ |
& a1+ 1/ AG/z+ 1) (10-1)
where z; = feedback impedance
z; = input impedance
— A = amplifier gain
For an integrator Eq. (10-1) becomes
o 1 1
* - (10-2)

3 Juk 1 4+ 1/4 + 1/judk

where k = RC is the reciprocal of the gain of the integrator. For
A 2> 1 the term 1/ A ean be neglected, and if ¥ = 1, Eq. (10-2) reduces
Lo

Ca Ta
—_— B

£ Jury + 1

(10-3)

where rq, the integrator time constant, is equal to A,
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In Sec. 2-2 the assumption was made that if ro (the amplifier
was sufficiently large the integrator could be assumed to be perf

giving
g 1
p S

A logarithmic plot of Eqs. (10-3) and (10-4) reveals the extent
the assumption made. Figure 10-3 is a plot of magnitude in deci

Slope = =6 db/octave

Magnitude, db

Actual

Phase shift

log e 1g)

Fia. 10-3. Logarithmic plot of integrator-gain and phase-shift characteristics.
dashed line indicates the desired characteristic; the solid line, the physically reali
ble characteristic. The magnitude plot erogses the O-db line at @ = 1 /&, where &
the reciproeal of the integrator gain.

va. log w for the ideal and for a physically realizable integrator. T
dashed line represents an ideal integrator, and the solid line represen
the physically realizable characteristic as expressed by Eq. (10-3).

It 18 apparent that the ideal characteristic of an integrator sho
have a slope of —6 db per octave over the entire frequency spectru
At extremely low frequencies the actual integrator characteristic m
deviate from the ideal characteristic because of finite amplifier
Furthermore, at some high frequency practical integrators again d
ate from the ideal slope of —6 db per octave. This is not shown
Fig. 10-3 but ecan be represented as an additional small time consta
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7y in the integrator transfer function. Including this effect gives the
more realistic integrator transfer function

ﬂ:- To 1
& Juwrg 4+ 1 jowr, + 1

For best computer operation, examination of Fig. 10-3 reveals that
the break in the logarithmic plot of the integrator characteristic must
oceur at a frequency lower than any frequency normally encountered
in problem solutions. Similarly, the slope of the integrator character-
istie curve should be controlled to well beyond the highest frequency
to be encountered in problem solutions.

The summing amplifiers used in analog computers are not without
inherent errors. The ideal transfer function of a summing amplifier is

(10-5)

€e = — ke (10-06)
2
where k; is the gain associated with each individual input e,
This simple transfer function is not physically realizable because of
stray capacitance in the adder circuit. The simplest expression giving
a realistic representation of the actual adder transfer function is of

the form
z ke

=]
Al (107
where 74 is the time constant of the adder. The magnitude and phase
plot of the desired and realizable response curves are shown as Fig, 10-4,

Macnee® has shown that, for imperfections in integrating and sum-
ming amplifiers of the form given by Eqgs. (10-5) and (10-7), the solu-
tion of the general ordinary differential equation

d™y
2 4. 5Y = f(0

n =)

(10-8)

on an electrome analog computer is not the true solution of Eq. (10-8).
For problem frequencies that are remote from both the upper and
lower eutoff points of the computer ecomponents, Macnee shows that
the difference between the characteristic roots of the computer results
¥, and the true characteristic roots v, of the equation is expressable as

Yo ™ Yo+ € (10-9)
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I.n addition there are m + 1 additional roots introduced into the solu-
tion by the amplifier imperfections, These m + 1 additional roots
have large negative real parts; thus they are heavily damped and can
be neglected in further analysis of the computer components.

1/+
0
=]
a
3 Actual
c
-
=
ﬂi
&
=
[- 1]
(]
m
T
=90 L
1 J .
0.01 0.1 1.0 10.1

I0g fwx 15)

_E:‘h IIzuﬂ-4irﬂuip and phase FIIH{'&EMriatira of a realizable and an ideal adder for & =1,
e break point of the magnitude plot ocours at @ = 1/ry radians /aee.

The error term in Eq. (10-9) is shown by Macnee to be

1 +1
ey = — — — Tl.hl; — T2Yn™

Ta _E}m n__-l'E""-m

(10-10)

where C"(v.) indicates the derivative of the characteristi 1
: teristic equati
Eq. (10-8) evaluated at the point ¥ = .. Thus Squation

Cly) =

o=

Aoy = (10-11)

and  C"(y) = mAwya™"' + (M — D Ap_yy™2 4 - . . + 4,

If I;Ihe roots of the characteristic equation of an ordinary differential
Equa_tmn of the form given in Eq. (10-8) are known and if in addition
!;h_e time i:unstants 7o, 71, And 7y of the computer com ponents are known,
It 1s possible to use Eq. (10-10) to determine the error in each root of
the computer solution, By evaluating the error e, for simple differ
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ential equations, it is thereby possible to determine the effect of ampli-
fier imperfections on the computer results,

Before proceeding with an actual caleulation demonstrating the error
present in simple problems, let us consider first the effect of each of
the computer time constants. The low-frequency cutoff of the inte-
grator, determined by the time constant ry, is seen to enter into Eq,
(10-10) in the first term only. Thus all roots of the characteristie
equation (10-11) are reduced by the factor 1/rs. This is the equiva-
lent of introducing a damping factor of the form e~ into the problem
solution.

The high-frequency integrator error associated with the time con-
stant ry is & function of 7, and the square of the root. Considering
this imperfection alone, the actual term of the problem solution will
be of the form C,evsti=rmat,

The error due to adder bandwidth is

E;m - md‘i-‘ru"_' + {_m - l]-l::in—l'fn-_’ + - +_-;!_|

Macnee proceeded further in his analysis of computer errors to show
the effects of amplifier imperfections in the equation of simple harmonie

motion. The equation for simple harmonie motion is
d
T+ onty = 0 (10-12)
The roots of the equation are
v = +jwg

The errors due to amplifier imperfections are, therefore, obtained by
substituting these roots into Eq. (10-10), giving

B __1_ . i_f_:ijmu]‘__l " Tt
€ = €1 = T'_u r;[‘?mn} 2iue = ;- + wo | 71 + 9

The computer solution of Eq. (10-12) is therefore

y = eluattrtnn—lnlt oog oot (10-13)

Several important conclusions can be drawn from Eq. (10-13).
IFirst, the high-frequency error of integrators is as important as the
error due to limited adder bandwidth., Second, the error in the solu-
tion of Eq. (10-12) is a maximum at the end of the computer solution
where  is maximum. Further, it can be shown that the maximum
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permissible solution time for a given percentage error ¢ in the problem
solution is

|~‘-1 T

50ws N 2ry + 72

From Eq. (10-12) it ean be easily shown that the effect of finite
adder bandwidth is great. Neglecting integrator imperfections by
setting o = =« and r; = 0, it is easily determined that a 1 per ce
divergence occurs in the solution of Eq. (10-12) in 4/7 sec for a ratic
of adder bandwidth (1/2xrs) and problem frequency w, of 2,000:1
The proof of this statement will be left for the reader as an exercise.

The example chosen here is an extreme case, as the roots of th
characteristic equation lie on the imaginary axis. Any perturbatio
from this position causes a marked change in the form of the problem
solution.

10-4. Overload Warning Systems. To achieve satisfactory resul
on a computer, it is necessary to know if an amplifier overload oceu
at any time during the running of a problem. The early overloat
warning systems used on computers consisted of a light or other devie
which signified that the output of an amplifier had exceeded som
fixed voltage level. This overload scheme is notoriously poor, as
does not indicate an actual overload. In the case of the early mod
REAC computer, an overload was signaled if the voltage at the ampl
fier output exceeded + 100 volts. Examination of the circuit diagras
of the REAC amplifier (Fig. 10-1) reveals that the amplifier is capah
of outputs up to almost +300 volts if no current is drawn from
amplifier and approximately — 190 volts regardless of the loading.
however, a load of 5,000 chms to ground is placed on the amplifie
it will overload at approximately 465 volts. The early overlo
warning system was, therefore, practically worthless. The introd
tion of the chopper-stabilized amplifier soon led to the adoption of
overload warning system that actually did signify an overload.

In normal operation the input grid of the d-c amplifier is at zer
potential. Only if an overload actually oceurs does the grid diff
appreciably from zero. Based on this principle, a satisfactory wa
ing system was devised for stabilized amplifiers that operates at g
time the output of the a-c amplifier reached a predetermined val
The system used in the REAC rectifies the output of the a-c amplif
with a crystal diode and applies the resulting voltage to a neon ind
cator lamp and to an overload amplifier which operates an audib
warning device such as a chime,

The d-c amplifiers using the commutator-pulse amplifier-stabi

f (max) =
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circuit of Ingerson are also provided with an overload warning sys-
tem. The operation of the overload warning system is gimilar to that
described for the REAC amplifiers in the preceding paragraph.

10-56. Boost. Another feature commonly provided on analog com-
puters is a boost. The boost is a provision that allows the circuitry
of the amplifiers to be modified conveniently in order to provide greater
output currents from the amplifiers. The boost is used whenever the
load on an amplifier is sufficient to cause the amplifier to overload in
its normal operating voltage range. The boosts on a REAC computer
consist of a group of 18,000-ohm resistors connected permanently at
one end to the 4300-volt supply. The free ends of the resistors are
brought to the patch board of the computer, where they may be con-
nected by patch cords to the output of the various computer ampli-
fiers. The effect of connecting a boost to the output of a computer
amplifier is to reduce the plate resistance of the output stage of the
amplifier. The reduced plate resistance allows the amplifier to sup-
ply more power to the output. The penalty paid for achieving the
increased amplifier power output is a reduction in the gain of the
amplifier. The reduction in gain is not serious in most chopper-
stabilized amplifiers, as the amplifier gain is usually greater than 10
before applying the boost.

10-6. Operate-Reset Systems. Some control system to permit the
starting and stopping of a problem is necessary in any computer. The
control system may seem to be a relatively unimportant portion of
the computer design, but a well-thought-out system contributes much
to the versatility of a computer and the convenience of using it.

The basic function of starting and stopping a problem need involve
only the integrators. To start a problem, it is necessary to connect
the inputs to the integrators. To stop or hold the solution involves
only removing the inputs of the integrators. To reset the integrators
to zero requires that the feedback condensers be discharged. To be
able to apply initial conditions to an integrator is a refinement that
i# very convenient but is not absolutely necessary. An initial con-
dition can be applied by starting the integrator always from zero and
adding the initial value to the output of the integrator by means of
a summing amplifier. Needless to say, this is wasteful of equipment
but is actually done in some equipments such as the Philbrick repeti-
tive computer (see Chap. 12).

Most computers utilize an elaborate means of applying initial con-
ditions to the integrators. A block diagram showing one scheme of
applying initial conditions is given in Fig. 10-56. The figure is over-
simplified but demonstrates the principle adequately., Relays 1, 2,
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and 3 are connected to the oPERATE-RESET switch of the computer in
such a manner that relay 1 is open and relay 2 is closed downward
(connecting the normal inputs to the amplifier) and relay 3 is closed
downward when the switch is in opERATE. In RESET position, relay 1
closes, relay 2 switches to the up position, and relay 3 connects the

Refay 1
0.1
—Wﬁ{—
. 0.1 y
Initial 1l
conditian
f ——%ﬂ-—r—"""-—;;:“-— —r,
Normal - \ Relay 2
inputs . Relay 3
—AAN—

Fie. 10-5. Simplified diagram showing method of applying initial conditions,
Impedance values are in megohms and microfarads,

normal inputs to ground. The transfer function for the amplifier,
when connected in this manner, becomes

€0 _ 1
e 0.1p + 1 (10-14)

where ¢ is the voltage applied as an initial condition.

If the input to the initial-condition terminal is zero, the outpu
voltage ¢, will decay toward zero in an exponential manner with a
time constant of 0.1 sec. Correspondingly, if a voltage ¢ is placed
on the initial-condition terminal, in the steady state e, = —e, and the
initial condition has been applied.

It is occasionally desirable to hold the computer solution at any
point in a problem. This may be accomplished by grounding relay 3
and thereby disconnecting the normal inputs of the integrators. In
the hold position, relays 1 and 2 remain in their normal or OPERATE
positions.

A circuit diagram of the control system used on the REAC com-
puter is shown in Fig. 10-6. The X and ¥V relays, identified on the
diagram, are arranged so that the relays will be in the oPERATE position
(switched to the left) when deenergized. This iz done in order to
reduce the noise level in the computer while operating. In REsET,
both the X and ¥ relays are energized. In hold position only the
Y relay is energized. The lower portion of the diagram shows the
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initial condition switches that are provided on six of the integrators.
The switches, together with the accompanying 30,000-ohm potenti-
ometers, provide for the convenient application of either positive or
negative initial conditions to the integrators.

High-gain
amplifier

1 pf==

Junction of
input resistors

To initial-
condition jack

L
&
=

D_:__ Q=g ===
bl |

|

I

Initial
condition
=
3

Fra. 10-6. REAC control system. (Courtesy of Reeves Instrument Corporation.)
A fourth position (balance check) is provided on the REAC control
switch. In this position the X and ¥ relays are energized but in addi-
tion a Z relay, found only on the summing and inverting amplifiers, is
energized. The purpose of the Z relays is to remove the input resis-
tors from the amplifiers and ground the summing junetion in a man-
ner gimilar to the functioning of the ¥ relay on an integrator, The
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balance-check position provides an easy way of checking the zero of
the summing amplifiers without first removing the problem from the
machine. A second purpose served by the balance-check position is
to allow the use of the REAC potentiometer setting scheme (see
Sec. 10-7).

The coils of the X, ¥, and Z relays are normally energized by throw-
ing a control switch. Connections from these relays are also brought
to the front of the patch board, however, so that they may be ener-
gized by some external means. The X, ¥, and Z terminals on the
patch board serve another purpose, as they provide a convenient means
of ganging several computers together so that they can all be controlled
by the same orEraTE switch, If the X, V, and Z relays of two com-
puters are interconnected and the oPERATE-RESET switch of one is left
in OPERATE, the oPERATE-RESET switch of the other is then in complete
control of both machines.

Considerable convenience in operation can be achieved by providing
a self-holding relay system to replace the oPErRATE-RESET switech, This
allows the control of the computer to be accomplished from positions
remote to the computer itself.

10-7. Potentiometer-setting Systems. [t is necessary to correct for
the loading effects on potentiometers in order to set accurately prob-
lem coefficients and initial conditions of problems. There are two
basic methods of correcting for potentiometer loading: (1) a correction
chart may be prepared for each value of load to be placed on
potentiometers, and the loading correction ean be added to the theo-
retical potentiometer setting to obtain the actual setting; or (2)
output of the potentiometer can be measured with the load applied.
The disadvantages of the first scheme are fairly obvious. By neces-
sity, the different loads that may be placed on the potentiometers
limited, and each potentiometer must have a linearity compatible with
the results desired. The system is relatively slow and cumbersome
use and is an additional source of human error. The preferred sche
of compensating for loading errors is to set the potentiometer to the
desired setting with the load applied.

The system commonly in use on REAC computers consists of an
individual switeh for each potentiometer and a potentiometer selector
switch to select the individual potentiometer to be adjusted.
individual switch associated with each potentiometer removes the
normal input to the potentiometer and replaces it with 4100 vol
from the reference supply. The potentiometer selector switch
nects the arm of the particular potentiometer to a terminal on
patch board. From there an external connection may be made to
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input of a servomultiplier or other high-precision voltmeter. When
using this scheme the potentiometer setting may be read directly on
the servo dial as a percentage of 100 volts. Since the servo follow-up
potentiometers most commonly used on REAC computers are linear
to within 0.05 of full scale, the setting may be made accurate to 1 part
in 1,000 or better.

On the REAC the initial-condition potentiometers are set by read-
ing directly the output of the integrator on which the initial condition
15 being set. A multiple-position switch 18 provided to facilitate the
easy selection of any amplifier output to make this reading possible.

The system in use in the Goodyear computer is similar to the REAC
scheme in that it allows adjustment of the potentiometers with the
load applied. In this system, however, the potentiometer output 1s
compared against a high-precision potentiometer by means of a bridge
cirenit. The comparison potentiometer 18 linear to within 0.05 per
cent, 80 that again precise settings can be made.

The assembly of very large computer installations has introduced a
requirement for improved means of setting potentiometers. In some
problems on large-scale computers, in excess of 1,000 potentiometers
must be set. Manual setting of this number of potentiometers
involves several hours’ labor and allows considerable opportunity for

. human error. To overcome this difficulty, Electronie Associates,

Inc., and others have developed devices for the automatic setting of
potentiometers,

The system used by Electronics Associates consists of a keyboard,
a control chassis, and the selection matrix, servo, and clutching sys-
tem necessary to select and automatically set one of 1,000 or more
potentiometers. In operation, the operator types on the keyboard
the number of the potentiometer to be set and the potentiometer
setting to an accuracy of 1 part in 100,000, if desired. The correct
potentiometer is selected and servoed to an accuracy of 0.01 per cent
of the correct value by comparison against a precision resistance stand-
ard. At the completion of the operation a light is lit signifying that
the desired setting has been made. The system is also adaptable to
the precise storage of values at the output of the computer amplifiers
for later permanent recording.

10-8. Automatic Programming. Analog computers can be made to
operate automatically for some types of problems. This can be ear-
ried out to a sufficient extent that a computer can be left unattended
for periods of an hour or more, The extent to which it is practical to
provide automatic controlling features is dependent upon the type of
problem to be encountered in a laboratory, In other words, the most
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elaborate automatic programming system may be completely ineffec-
tive unless it is designed for the particular job that it must do.

The type of problem which lends itself best to automatic programs-
ming is one in which the parameters of the problem remain constant
and the initial conditions must be varied in incremental steps from
run to run. If a large number of problems fitting this category are
to be solved by a computer laboratory, an automatic programmer
should seriously be considered.

Follin' of the Applied Physics Laboratory at Johns Hopkins Uni-
versity has constructed what is perhaps the most elaborate automatic
programmer in use today. The work of the laboratory is of such a
nature as to warrant it, however. The laboratory is concerned largely
with the simulation of guided-missile systems. The launch phase of
guided missiles entails the study of the missile behavior for a large
number of initial launch angles, a situation ideally suited to automatic
programming. The use of an automatic programmer has many advan-
tages where it is applicable. The programmer eliminates many human
errors in setting initial conditions, it appreciably increases the work
output of a computer, and it reduces operator fatigue.

It is possible to perform many simple automatic operations on a
computer without an elaborate programming device. A few of these
applications will be discussed in the remainder of this section. Al the
operations may be performed by the use of diodes or differential relays
and RC components that are easily obtainable.

A simple application of automatic computer operation can be made
in plotting bomb trajectories on a plotting board. In a problem such
as this, for uniformity of plotted results, it is desirable that all tra-
jectories terminate at a certain value of h, namely, h;. This can be
accomplished by automatieally lifting the plotting-board pen at the
predetermined value of h. Circuits capable of energizing a pen-lift
relay are shown in Fig. 10-7. Figure 10-7a utilizes diode circuitry,
and Fig. 10-7b makes use of differential relays.

In Fig. 10-7a assume that b is greater than h,. The output of the
high-gain amplifier will, therefore, be negative and the diode will cone
duct, clamping the amplifier output to zero. As soon as h becomes
less than %, the amplificr output becomes a large positive value and
causes relay 1 to close, applying +26 volts to the pen-lift relay.
Simultaneously, 26 volts is applied to relay 1, keeping it energized
regardless of the magnitude of &. To lower the pen, it is necessary
to press the push button breaking the seli-holding circuit. ‘igure
10-7b demonstrates a means of performing the same Job with differ-
ential relays. Again, DR 2 is provided only to make the circuit self-
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holding. A standard 26-volt relay could have been uam:! in & manner
similar to the circuit of Fig. 10-Ta if the second differential relay were
not available. o
To perform only the operation of lifting the pen with the circuits
described above is somewhat wasteful, as the same circuit may a.Isu
be made to reset the computer. This is accomplished by connecting

+ 26 volts
Releass
—0_ |
e _»ToXand Y
| relays
|
h
O
10 Pen-lift
= =3 rela
Reiay 1 ¥
{a)
h
— ¢ Be ey ToXand Y
h| G DR1 A e maﬁ
o Pen-lift
+100 +26 relay
Release £
)
L)
DR 2 .loJ

Ko

ib)
Fia. 10-7. Pen-lift circuits: (a) diode circuit: (b) diferential-relay eircuit.

the lead to the pen-lift relay to the X and Y relays of the computer,
as indicated in Fig. 10-7. Then, as soon as k falls below the predeter-
mined value hy, the pen will lift and the computer will reset. To lu_wn?r
the pen and place the eomputer in operation on the next run, it is
necessary to press the release button.

Problems arise in whieh it is desirable to reset the computer and
again place it in operation without changing any parameters of the
problem. This is a useful mode of operation in problems where _tl:ue
statistical effects of random noise are to be evaluated, or it is particu-
larly effective when adapted to the problem of a.utnmatically_nptf-
mizing control-system components. Figure 10-8 prmrid_ a [:l:l'(.‘:l.llt
capable of operating for a fixed time, resetting, and again operating
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after a briefl interval in neseT position. The two inputs —¢ and ¢
cause the output of the first high-gain amplifier to be zero or a posi-
tive overload, depending on whether ¢, or ¢ is the greater. When
exceeds {,, a large positive voltage is suddenly applied to the input of
the integrator, causing it to increase negatively until the relay switche
the machine to reEser. The voltage at the output of the integrate
will then decay until the relay releases, allowing the machine to ope
ate once more. The point at which the computer resets is determined
by the nature of the signal { and the magnitude of the constant ¢
The period of time it remains reset is a function of the voltage —¢
applied to the integrator. A high-gain amplifier is used to form an

+26

" ToXand ¥
relays

—
—_—

Fra. 10-8. Automatic operate-reset circuit.

integrator in this application, as a prewired integrator would &
affected by the resetting of the computer. In this application
first high-gain amplifier in the circuit should be used in its manual
balance position, as it will be overloaded each time the computer reset

Other circuits can easily be devised to perform this same operation
Differential relays lend themselves readily to this application, as d
other circuits involving high-gain amplifiers and relays. This is to k
expected, however, as a differential relay is nothing more than a high
gain amplifier and relay combined into a single unit.

In certain problems it is desirable to construct memory circuits an
cumulative adders, or devices capable of summing discrete voltages
predetermined points in the solution of a problem. Most frequentl
these requirements arise in problems where repetitive operation
required. A cumulative adder may be prepared as in Fig. 10-9,

The differential relay is caused to position the relay so as to cha
the condenser ', at a predetermined time in the problem solution
depending on the inputs of the differential relay. After charging
condenser, the relay is switched to connect the condenser (', to
integrator input. Each time the sondenser is charged and its outpu
is subsequently connected to the integrator, the integrator outpu

increases proportional to the charge placed on ;. The circuit becomes
a memory circuit if only one cycle of relay operation is accomplished
between intervals when the integrator is reset. The integrator shown
in Fig. 10-9 can be reset completely independent of the operate-reset
cycle of the other integrators by shorting its output to its grid by
means of a second differential relay, thus giving still another mode of
operation of the circuit.
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Fia. 10-10. A bouncing-ball trajectory,

A trivial problem that demonstrates an interesting mode of eom-
puter operation is the simulation of a bouncing ball. Assume that a
ball is projected horizontally from a height of 2 ft with an initial veloe-
ity Vg of 4 ft/sec, as in Fig. 10-10. Further, assume that the friction
drag of the ball in air is negligible but that 40 per cent of the vertical
component of the ball's kinetic energy is dissipated each time it strikes
a frictionless surface.

The solution of this problem that will be demonstrated uses two
similar eireuits to generate alternately those portions of the trajectory
that lie between the points at which the ball contacts the surface. In
other words, one circuit is used to caleulate the trajectory until the
point is reached at which the ball first contacts the frictionless surface,
During that portion of the trajectory the appropriate initial conditions

--___._.._l-n..J
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of the second circuit are automatically charged to the proper val
At the time of contact of the ball with the surface, the first compu
1s automatically reset and the second cireuit begins operating so as
continue the calculation of the trajectory over the second portion
the solution. While the second computer is operating, the initial e

Initial condition = 20101
=100

Ko — — X, Y control relays
z-.g'-:'_-"_s . E 100 K .
@—'{;-D 112 %100 & AN oy
+100 i
=100 a = G
DR 3| o=—+26 volts DR4| o—m
— a o IEr
P 100 K i
-e| DR2|K —N\ 2
ﬁ G A 100 K Oy
=100 ET —=X", ¥* control relays
=100

Fra. 10-11. A two-computer eircuit for the solution of the bouneing-ball probl

ditions of the first circuit are reset to the proper value so that t
solution can be continued for the third portion of the solution.

In order to facilitate the setup of the circuit, two computers ha
been used. The components associated with the second computer
denoted by asterisks in the circuit diagram (Fig. 10-11),

The equations of motion of the ball are

W= J-F:"ﬂ
d*y
iz = Y

= [V.dl

where V, = V,(0) = 4 ft/sec and y(0) = 2 ft,
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The first step in preparing the setup is to determine the range of the
problem variables during the problem solution. The maximum values
of the variables are

y (max) = 2t
E:f% (max) = +/2gh == 11 ft/sec

In the problem the velocity initial condition on one computer is to
be continuously set to the value caleulated by the other computer,
The problem must, therefore, be slowed down until the time constant
of charging the condenser in the feedback of an integrator can be neg-
leeted. For a REAC this time constant is 0.1 sec. For the purpose
of this demonstration problem it is assumed that slowing the problem
solution by a factor of 20 will produce satisfactory results. Applying
this time-scale change to the problem equations and adjusting the
amplitude-scale factor gives

dy _ _ 4
Wi = " 20
- | Y
= f 20 9"
dr . _ V0) _ -
d_r{[}] =50 = 0.2 ft/machine sec

The setup of these equations is shown in Fig. 10-11.

Differential relays 1 and 2 are used to sense the time at which the
ball strikes the surface. At that time the differential relay associated
with the operating computer switches, causing 4100 volts to be applied
to the corresponding grid of DR 3 and thus switching that relay. This
resets the operating computer, since DR 3 applies 26 volts to the coil
of the operate-reset relays of the appropriate computer. (The REAC
operate relay windings have their terminals brought to the patch board,
s0 that this can be conveniently done.) At the same time the 26 volts
is removed from the relays of the alternate computer, allowing it to
start operating. After DR 3 has switched, it is held in the appropriate
position by the feedback applied to its grid from the corresponding
relay contact. It should be noted here that DR 1 and DR 2 must be
hiased to switch slightly after the ball has reached the surface, so that
the armatures of both DR 1 and DR 2 are returned to the k position
after the appropriate computer resets. This allows DR 3 to switch
the next time y becomes slightly less than zero. Providing the relay
circuits are sufficiently sensitive, this error can be kept negligibly small.

The purpose of DR 4 is to connect the plotting device at all times
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to the operating computer so that a continuous plot of the results
be made. The plot of the problem solution is given in Fig. 10-12.
Other circuits can be devised to perform the automatic solution
this problem. It is possible to devise a similar eircuit using only one
computer. The same principle that was used here can be used in the
preparation of a one-computer diagram if multiple contact relays are
available,
The examples of circuits cited here have only touched upon the
many possibilities of automatic computer operation. It is hoped that

Fia. 10-12. Plot of the solution to the bouncing-ball problem.

the illustrative circuits given will aid the reader in designing cireui
to meet the requirements of individual problems. If a more elabora
programming scheme is necessary, the reader is referred to a pa
by Follin, Emeh, and Walters* describing the programmer they ha
found useful,

PROBLEMS
10-1. Bhow that in the computer solution of the equation

T+ iy =0

the maximum permissible solution time for & given percentage error e is
|l| 4 f T -

T 2ry + 1y

where ry = low-frequency integrator time constant

71 = high-frequency integrator time constant
72 = adder time constant

{ (max) =

Hixr: Express the exponential function in Eq. (10-13) as a power series,
the error is small, the higher-order terms in the expansion may be neglected.
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10-2. Show that in the equation
dy
0 + wey 0

the effect of finite adder bandwidth will cause a 1 per cent divergence of the solu-
tion in 4/ see if wy = 5(2#¢) radians/sec and the adder bandwidth is 10,000 cps.
Assume perfect integrators (ro = = and r, = 0),

10-3. Determine the expression for the error in a computer solution of

dl

For ro = 30 3 10%, vy = 0, and ry = 1.59 ¥ 10r% what ia the error after § sec of
computer operation?

10-4. For a REAC amplifier (Fig. 10-1), what is the positive output voltage at
which the amplifier will overload for (a) a 30,000-chm load to ground; (&) a
10,000-0hm load to ground; (¢) a 5,000-0hm load to ground; (d) a 5,000-0hm load
to ground and a boost conneeted to the amplifier output?
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CHAPTER 11

THE CHECKING OF COMPUTER RESULTS

11-1. Introduction. One of the greatest problems confronting
analog-computer operator is the checking of computer results, Until
the computer results have been checked by some independent mean
it is impossible to say with certainty, * These solutions of the proble
are correct.”

Methods of checking computer results can be classified into t
categories:

1. Complete checking

a. Analytie

b. Numerical analysis
2. Partial checking

The most desirable check for analog-computer solutions is, of cou
an analytic check or a numerical solution of the problem. The a
lytie solution of many of the problems solved on analog computers
impossible, leaving only the numerical mathematical methods for
engineer to employ.

To attempt to solve by numerical methods all the runs for a
ticular problem which has been run on an analog computer would,
course, be prohibitive in most cases. Why employ the analog co
puter at all if this must be done? The best approach seems to
one of compromise, and to be able to say, “These results are preci
to — per cent, I believe. Any chance of major errors’ entering in
them is small.”

The compromise that many computer installations have chosen
to perform a check by numerical mathematical methods on a f
selected solutions of the problem. The analog-computer results f
the corresponding problem solutions are then compared carefu
against the check solutions. In this manner, it is possgible to evalua
the precision of the runs obtained. All other computer solutions
then compared against the check solutions to see if the changes in
solution, due to variations of the problem parameters, are of a logi
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nature. If any questionable results occur, a check solution is rerun
on the computer to ensure satisfactory operation of the computer, In
this manner, reasonable assurance of correct results is obtained.

11-2. Checking Problem Preparation. Other than checks made
independently on other types of equipment, there are many things the
analog-computer operator can do to improve the probability of obtain-
ing satisfactory problem solutions. Foremost among these is the
checking of the equations or “mathematical model” of the system.
Needless to say, if the equations of the system are incorrectly repre-
sented, no amount of checking of the computer setup and computer
solution can give satisfactory results, This portion of problem check-
ing may seem unworthy of mention, but a large percentage of unsatis-
factory computer results arise from incorrect equations. People have
a tendency to believe anything they see in print regardless of the reli-
ability of the source. Adopting an attitude of looking upon any data
with some suspicion will often pay dividends, Any equations taken
directly from books or papers should be checked for possible errors,

A second precaution necessary in order to achieve satisfactory com-
puter operation is to check carefully all steps in the preparation of
a problem for computer solution. The check of all transformations
made on the problem equations and the check of the problem setup

-«can best be performed by a person other than the one who originally

performed the work. For this reason, it is highly desirable that com-
puter operators work in pairs. In preparing a eircuit diagram, it is
mandatory that the output of each amplifier and potentiometer be
carefully labeled. It may seem, while preparing the cireuit diagram,
that it is unnecessary to do this, but it is very difficult to perform a
check of a problem setup unless the diagram is properly labeled,

Let us now consider in greater detail the individual checks that aid
in obtaining the correct solutions of problems on an analog computer,
After the equations have been proved correct, any transformation
made on a set of equations should be checked by performing the inverse
transformation to again give the original equation. In checking any
time-scale change, the problem initial conditions must be considered
as well as the other equations of the system.

After ensuring that no errors have been introduced into the work
by the mathematical manipulation of the equations, the circuit dia-
gram should then be checked. A check of the cireuit diagram is best
performed by laying aside the original equations and rewriting the
equations from the cireuit diagram alone. Carrying out this process
is simplified if all inputs and outputs on the problem circuit diagram
are carefully labeled. Rewriting the problem equation from the cir-
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cuit diagram is accomplished by equating the output of each amplifier
to the negative of the inputs, taking into account any integration
which may be performed in the amplifier. Following the check of the
cireuit diagram, it is desirable to recheck the equations of the potenti-
ometer settings. The work should again be carried out independently
to avoid duplicating original errors. .

After all these checks have been completed, a brief check of the
computer should be made before placing the problem on the machine.
The minimum check that should be made is to scan each amplifier
output with all inputs set to zero. This simple check will reveal
several possible computer malfunctions. Typical of the possible mal-
functions that can be detected by this check are:

1. Faulty tubes or circuitry in the operational amplifiers

2. Inoperative automatic-balance system

3. Faulty relay system (if malfunctioning amplifier is used as
integrator)

4. Need for rebalancing the computer amplifiers (whether ampli
are the stabilized or the unstabilized type)

A check of the computer power-supply voltages should also be
since malfunctions in the reference power supply cannot be de
by the above amplifier check.

The minimum machine check-out outlined here should be su
mented frequently by a careful check of all components, including
input and feedback impedances employed in the summing and in
grating amplifiers. A circuit that has been found useful in performing
& dynamic check of a REAC computer is included in See. 11-7. K

Another important check that should be made is to check the wiring
of the computer in order to ensure that it agrees with the cireuit dig-
gram. A partial check can be made by counting the numbe}- of inputs
and outputs of each amplifier. The best check, of course, is actually
to check each wire used in the cirenit. A convenient means of carry-
ing out this check is to check the inputs and outputs of each amplifier
in turn.  All connections other than the inputs of potentiometers set-
ting constants in the problem are checked in this manner. These may
be checked separately.

11-3. Partial System Checking. Even after all these checks have
been made, it is still possible that troubles will arise in the solution
of a problem. These troubles may be due to malfunctioning nu:ilifrr
equipment such as relays, multipliers, or arbitrary-funetion-genera
equipment, or they can be due to faulty contacts in removable pa
boards. In order to aid in determining the source of computer
functions, a static check can be performed at the output of all
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puter components. In order to make this check as complete as possi-
ble, all integrators that are used in the problem should be assigned an
initial value other than zero even though they may have an initial
value of zero in the problem. Using these initial values it is then
possible to determine the voltage that should be present at the output
of each component in the cireuit. This check is extremely valuable in
trouble shooting a problem setup that does not operate properly. In
order to clarify the procedure, the bomb-trajectory problem of See, 50
will be considered here in detail. For convenience in referring to the
circuit diagram of the problem, it is reproduced here as Fig, 11-1,

TanrLe 11-1. ProprEM CHECK-oUT BuRpT

Amplifier Cutput Voltage
1 i V.S 20 | 25
2 o7 .38/2 15
3 | —h/200 — 100
4 /200 0
8 - ¥ /200 2.5
9 | —50(1 — 0.135 % 10-%) —36.5
10 | 10,5130 { 13.32
11 | =b.265pV =31.33
12 40002633, 1 0, &3
20 | —(100g cos 8)/V —5.67

In the diagram of Fig. 11-1, if the initial values V(0) = BOO ft/see,
A0} = 20,000 ft, and & = 30° are assigned to the problem varinbles,
a static check of the problem solution can be made. For the initial
values of the variables listed above, the voltage at the output of each
amplifier should be as listed in Table 11-1. Using Table 11-1, it is a
relatively easy task to determine whether the computer cireuit is opor-
ating properly in the static condition. Unfortunately this cheek-out
scheme does not check the performance of the integrators, but it does
provide a systematic procedure of problem check-out that has proved
to be of great value in the past.

Any variation of amplifier output voltages from the caleulated values
given in Table 11-1 indicates a computer error and provides a ready
means of locating the error. In general, the larger the problem the
more valuable a check-out sheet of the type shown in Table 11-1
becomes.,

Often a slight modification of the equations of a problem changes
the problem from a form that is extremely difficult to check to one for
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which the solution is known. Thisis true for many problems involving
limiting and other nonlinearities. Full advantage should be taken of
this form of problem checking whenever possible.

The bomb-trajectory problem of SBec. 5-6 offers an excellent example
of this type of checking. If the drag is made equal to zero, the time
of fall and the range are easily calculated. A “vacuum™ trajectory is,
therefore, an important part of the problem check-out. This, com-
bined with a static check, as previously discussed, makes a check by
numerical analysis practically unnecessary.

A check of problem operation performed by modifying the system
equations is a form of partial checking. Although partial checking is
certainly not so adequate as complete checking, it plays an important
role in computer operation. In the application of computers to the
study of servomechanisms, partial checking is extremely important.
The complete system may frequently be broken down into smaller
parts for which the solution is easily predicted. Checks performed in
this manner are most valuable as an aid in locating trouble in a com-
puter eireuit, but they do not prove conelusively that a problem, when
operated as a whole, is operating correctly.

11-4. Checking Problem Stability. At times, the intuitive guesses
made by an engineer about the behavior of a system are completely
erroneous. It can happen that a system that is presumed to be stable
is actually unstable. To an analog-computer operator, the appear-
ance of an unstable solution usually is interpreted to mean that a mis-
take has been committed in the eircuit preparation. The mistake may
be in the form of an error in sign, or it may be an error in computing
a potentiometer setting. Occasionally, it may mean a malfunetion of
the computer. The result is almost always, however, that the com-
puter operator will frantically hunt for errors in the problem setup.

Upon encountering an unstable analog-computer solution and after
making a reasonable effort to ensure satisfactory computer operation,
it usually 18 wise to stop and check the system equations, to deter-
mine whether the system should really be stable. For linear systems,
Routh’s criterion' is the easiest stability check to apply. This
method does require that the characteristic equation of the system
be obtained, but it is far simpler than other methods. Only by per-
forming a stability check can the engineer ever be sure that an error
was not made in the setup of problems having an unstable computer
solution. Even though the physical system that a problem represents
is known to be stable, a stability check of the problem equations is
not out of order. By performing a stability check, it can oceasionally

* Routh's eriterion is stated in See, A-4,

B WY )
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be determined that the system equations do not properly rep
the system.

If a nonlinear system proves to be unstable, the best approach in
determining the reason for the instability i2 to linearize the system
and investigate the system in simplified form. If, upon placing the
linearized version of the system upon the computer, the solution is
still determined to be unstable, it will then be relatively easy to justify
the instability. If the solution of the linearized system is found to be
stable, the problem nonlinearities may then be reintroduced, one at a
time. The reason for the instability can be readily isolated in this
manner.

11-5. Specialized Checking Procedures. Ocecasionally, the roots of
the characteristic equation of a system of differential equations tha
are to be solved on an analog computer are known. This is frequentl
true in the case of the analysis of servomechanism systems for which
stability analysis has previously been made. Knowledge of the r
of the characteristic equation allows checking to be performed b
analysig of the computer results. From the computer results the f
quencies and damping of the modes of oscillation of the problem
often be determined. The method is not too satisfactory, however
ag in many applications it ig impossible to identify all the roots of
characteristic equation from the problem solution. This iz partie
larly true in the case of negative real roots that introduce small ti
constants into the problem. It is easy to visualize how roots of thi
type may be completely masked by a pair of conjugate complex roo

Richmond and Loveman?® have shown that the initial conditions
a problem can be adjusted to give zero as the value of the coeffici
of each of the roots or complex pair of roots in a system, except
root under investigation. In this manner, each root of the proble
may be properly identified. The method, unfortunately, requires tha
the system of differential equations be solved and thus, in many cases;
is extremely difficult to apply. It is therefore of limited usefulness in
the checking of analog-computer results.

The method of substituting the values of the variables of a problem
(obtained from the computer solution) back into the system equations
has proved of little value in checking analog-computer solutions i
the past. The basie difficulty encountered in the method is that the
integrations in the problem are not checked. Richmond and Love
have proposed a scheme for checking computer results that is act
a substitution check repeated at sufficiently close intervals to allow
check of the problem integrations by numerical differentiation.
method further employs a statistical analysis of the errors obtain
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Without the statistical evaluation of errors, the method would have
little value, as a large or small error does not necessarily identify cor-
rect or incorrect results. The method is based upon the assumptions
that an error & made in reading the recorded variable of a problem
solution has a normal distribution, a mean of zero, and a standard
deviation of ¢ and further that § is independent of the magnitude of
the variable.

In evaluating the error in the solution of an equation by this method,
the values of the problem variables, as determined from the recorded
problem solution, are substituted into the differential equations of the
problem. This substitution is performed at frequent increments of
the problem independent variable. The error found is then divided
by the standard deviation of the distribution 5, giving a new error
eXpression
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having a normal distribution, a mean of zero, and a variance of 1,
In the analysis of a given equation, the value £ is caleulated for each
point read from the graphs. If n values have been examined, this
mean may be expressed as

.

Z E;

_ A=l
_"n'I

The disadvantages of the system seem to lie in the assumptions
made as to the errors commonly encountered in recording devices,
In particular, the assumption that the reading error § is independent
of the magnitude of the variable would imply that the recording deviee
15 linear. Standard galvanometer-type recorders are often nonlinear in
action, so that an error must be introduced into the analysis, Record-
ings made on devices such as plotting boards, where linearity is good,
would seem to be well adapted to this type of error analysis.  In fact,
Richmond and Loveman have indicated that errors as small as 5 per
cent are detectable by the method even from recordings made on
Birush recording equipment.

The chief advantage of this method of error analysis seems to lie in a
reduction of the numerical caleulation required over a straightforward
step-by-step numerical solution of the problem. This is brought about
by the fact that the points chosen for checking need not be as closely
spaced as is required for the direet numerical solution of the problem,
Another advantage lies in the adaptability of the method to simulation

M (11-2)
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problems involving actual hardware in the computer setup. Step-by-
step numerical solution eannot be applied in this type of problem.

Totake full advantage of the checking method proposed by Richmond
and Loveman, digital read-out equipment should be employed. The
output of the various amplifiers should be recorded at specified time
intervals on cards or punched paper tape to be used directly as an
input for a digital computer used to perform the problem check.

As in any other method of complete checking employing numerical
methods, a hand solution is quite lengthy and costly of time. IBM
punched-card equipment or other digital computing equipment is very
helpful in the economie use of such checking methods. The treatment
of numerical methods, useful in the checking of analog computer
results, is beyond the scope of this discussion. The reader is referred
to the excellent books available on the subject.®4

11-8. The Role of the Digital Integrating Differential Analyzer in
Problem Checking. Another possibility for checking the results of
the electronic analog computer lies in the use of digital integrating
differential analyzer type of equipment. The advantage of checking
electronic-analog-computer results with this equipment lies in the
ability of the equipment to carry out caleulations to six-significant-
figure accuracy and in the ease with which problems can be coded
for solution on the computer. The coding is analog in nature s
resembles very closely the coding for mechanical differential analyze
of the type constructed by Vanevar Bush.’

The question may arise, then, “ Why not replace the electronic ana~
log computer with the digital integrating differential analyzer?” The
answer to this question lies in the speed of operation of the two devices.
The digital integrating differential analyzer is in the order of 10 times
slower than the electronic analog computer when operated to approxi
mately the same accuracy. The addition of each significant figure of
accuracy to the problem solution on a digital integrating different
analyzer (by coding) increases the problem-solution time by a factor
of 10. The computer operates at one one-thousandth the speed it can
achieve using three-significant-figure accuracy, if it is coded for six=
significant-figure accuracy. The digital differential analyzer will
discussed in more detail in Chap. 13.

11-7. A Dynamic Check of Computer Operation. For a consider-
able time, analog-computer operators have sought a rapid and con~
venient means of checking a computer to determine whether its ope
ation is satisfactory. In order to be most useful, a check should &
dynamic in nature so as to check integrations as well as summation
To be complete, the check should utilize all inputs and all outpu
of the equipment undergoing test,
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To devise a test problem fulfilling all the above requirements seems
at first virtually impossible, and consequently little has been done
along this line by most computer installations.

In reality, the preparation of a test problem capable of checking
the operation of all integrating and summing amplifiers is not diffieult,
The approach that has been found useful on a REAC computer is to
prepare a patch board to generate three sinusoids using excessive equip-
ment in the circuit. By this means, all inputs and outputs of each
amplifier, with the exception of one summer and one integrating ampli-
fier, are used in the problem. The sum of two of the sinusoids at a
time, operating 180° out of phase, are compared on a Brush recorder.
Any error signal obtained by summing the sinusoids indicates a mal-
function of some sort. Experience in using the circuit has shown it
to be very sensitive to errors in the gains of the inputs of the various
amplifiers. It is interesting to note that the very first application of
the check problem on a relatively new computer located two cold-
solder joints in the wiring of the patch bays. These cold-solder joints
had remained undetected by the more conventional checks that had
been made on the computer prior to that time. The check problem’s
usefulness is further increased by the ease with which any errors that
are detected can be localized to a very few components on the com-
puter. A comparison of frequencies of the sinusoids makes this
possible.

The circuit diagram of the check problem devised by Warshawsky
18 included as Fig. 11-2, Brush recordings showing the response
obtained from a properly operating computer are shown in Fig. 11-3a.
A recording showing the effect of a 1 per cent error in a gain-1 input
of an amplifier is shown in Fig. 11-3b. The error shown is typical of
the errors present when amplifier gains are faulty.

11-8. Accuracy and Precision. No discussion of the methods of
checking solutions obtained on an analog computer would be complete
without at least a brief discussion of the terminology normally used in
deseribing the degree of adequacy of analog-computer results. In the
past, much confusion has been caused by the improper use of the terms
error, percentage error, accuracy, and precision.

Error is defined as the difference between an observed or caleulated
value and the true value. Precision is the quality or state of being
precise; exactness; accuracy; definiteness. Accuracy is defined as the
state of being accurate; freedom from mistake or error; exact con-
formity to the truth. Percenlage error, however, is a term that is com-
pletely meaningless unless the term is carefully defined by the user.

To ask: *“ What is the accuracy of an analog computer? " is meaning-
less. The capability of an analog computer to produce precise results
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use of the term percentage error. The improper usage of terms is illus-
trated by an actual incident with which the author is familiar. A
particular problem was solved on an analog computer, and the graphi-
cal solutions of the problem were returned to the person who had sub-
mitted the problem. Shortly thereafter, a complaint was registered,
stating that a numerical check of the problem solutions revealed that
the problem results were in error by 150 per cent. The solutions of
the problem were of such a nature that they approached zero asymp-
totically as { tended to infinity. In the region ¢ 3> 0 the numerical
solution and the analog-computer results differed slightly. It was this
difference that had been reported as a 150 per cent error. If the error
had been caleulated as a percentage of the maximum value of the vari-
able, the percentage error would have been found to be approximately
0.2 per cent. Proper definition of terms could have prevented the
confusion that arose in this instance.

It is interesting to note that it was later determined that the analog-
computer solution of the above problem was more precise than the
numerical solution with which it was compared. In the numerieal
check of the problem solution the inerements of tabulation were chosen
to be too large, thereby introducing an appreciable error into
solution.

The precision of the results obtained on an analog computer is fre-
quently influenced greatly by several factors. Most important amon
these is the very nature of the problem itself. A second factor that
plays an important part in the precision of the computer results is the
state of repair of the computer. High-accuracy multiplication, f
example, is impossible on poorly aligned servomultipliers. A thi
factor that contributes greatly to the precision of a problem solution
is the ability of the computer operator., The differences between a
good computer setup and a relatively poor computer setup are often
emall. Similarly, the time required to modify a ecireuit diagram to
improve it is usually a small percentage of the total time spent in
problem preparation. If a computer operator takes the time to make
needed refinements in a circuit diagram, he is almost always repaid
for his efforts by a feeling of satisfaction for having completed a task
that is well done,

PROBLEMS

11-1. From the circuit diagram of Fig. 11-1, write the equations of the bomb-
trajectory problem. This check should include writing the identity satisfied hy
all summing amplifiers and multipliers, Compare your results with the original
equations of the system (Sec. 5-6).
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11-2. Check the circuit diagram given in Fig. 4-3 by writing the system equa-
tions from the cireuit diagram.

11-3. Check the eircuit dingram given in Fig. 5-10 by writing the system oqui-
tions from the eircuit diagram.

11-4. Prepare a problem check-out sheet, similar to that in Table 11-1, for the
eireuit diagram of Fig. 5-10. Use z(0) = y(0) = 1 as initial values of = and y for
the check-out,

REFERENCES

1. Gardner, Murray F., and John L. Barnes: “Transients in Linear Systems,”
p. 197, John Wiley & Sons, Inc., New York, 1942,

2. Richmond, W. F., Jr., and B. D, Loveman: Checking Analog Computer Bolu-
tions, “‘Project Cyelone Symposium 11 on Simulation and Computing
Techniques, Part 2," pp. 147-154, Reeves Instrument Corporation (under
sponsorship of U.B. Navy Bpecial Deviees Center and the U.8. Navy Bureau of
Aeronautics), New York, Apr. 28-May 2, 1952

3. Bearborough, James B.: “ Numerical Mathematical Analysis,” Johns Hopkins
Press, Baltimore, 1930,

4. Milne, W. E.: “Numerical Caleulus,”” Prineeton University Press, Prinoeton,
N. [, 1940,

5. Bush, Vannevar, and 8. H. Caldwell: A New Type of Differential Analyser,
J. Franklin I'nsi., vol. 240, no. 4, pp. 255-326, October, 1945,

sl



CHAPTER 12

REPETITIVE ANALOG COMPUTERS

12-1. Introduction. In the preceding chapters little mention
been made of repetitive electronic analog computers, However, m
of the techniques previously presented are, with a few exceptio
readily applicable to repetitive computers. In order to be able
apply those techniques, it is necessary only that the computer o
ator be familiar with the characteristics of the repetitive compu
and particularly with the ways in which repetitive computers diff
from real-time computers. It is the purpose of this chapter to famili
ize¢ the reader with repetitive computing equipment so that he
realize the limitations and eapabilities of the equipment.

12-2. Advantages and Disadvantages of Repetitive Compute
The field of application in which the repetitive computer shows
to best advantage is in the simulation of servomechanism proble
In this field, some workers claim the repetitive computer to be superi
to the real-time computer. This view is not shared by a great nu
ber of other workers in the computer field, and it is not the auth
intention to become engaged in this discussion.  Let it suffice to
out that the repetitive computer has gained widespread recogniti
and use and is capable of satisfactory results when used for the sol
tion of many types of problems.

The basic characteristic of the repetitive computer that distingui
it from the real-time computers previously discussed is that in
repetitive computer the solution of problems is carried out at an ac
erated time scale. The problem solution is repeated sufficiently of
to allow its presentation on an oscillosecope. The most common
tition rates of problem solution used on repetitive computers are |
and 60 solutions per second. Of these solution repetition rates,
slower rate has certain definite advantages and 18 gaining more wi
spread acceptance among users of repetitive computing equip
The advantages of the slower repetition rate of problem solution

be made clear in a later section.
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In the past, little or no emphasis has been placed on the production
of a high-precision repetitive computer. As far as is known to the
author, no existing repetitive computer has been equipped with feed-
back and input impedances having a precision of better than 1 per cent
of standard values. In fact, ordinary 5 per cent carbon resistors are
commonly used in the computing circuits, The use of low-cost con-
densers in the integrators of repetitive computers is8 made possible by
the short computing time required in the solution of problems. Inte-
grator drift in a repetitive computer is relatively unimportant as com-
pared to real-time computers, as problem-solution times are usually
measured in milliseconds rather than in seconds. The short solution
time of problems relaxes the requirements placed on the other com-
puter components as well. The gain of amplifiers used in repetitive
computers is frequently much lower than the gain of amplifiers found
in most real-time computers. In the repetitive computer, the manner
in which the equipment is used does not justify the use of more expen-
sive high-gain amplifiers. The repetitive computers can, therefore,
be in general classified as low-cost computers.

An operational advantage of the repetitive computer over the real-
time eomputer is its ability to show almost instantaneously the effect
of varying the parameters of a problem. This advantage is greatest,
perhaps, in the synthesis of servomechanism systems. On the repeti-
tive computer, a problem parameter can be changed and the results of
the change ean be viewed as a continuously varying system response.
On the real-time computer, the computer must be reset and again
placed in operation for every change of problem parameters. The
operator is, therefore, able to sean the entire interesting range of prob-
lem parameters much more rapidly on the repetitive computer than
on the real-time computer.

A major disadvantage of the repetitive computer is its relatively
low aceuracy. It is difficult to obtain results precise to more than
5 or 10 per cent of full scale using this type of equipment. This is
fortunately not a serious handicap in the solution of many problems.
The analysis of a servomechanism system, for example, requires that
the form of the solution be known rather than the quantitive values
of the problem variables at all times. Other problems require as high-
precision results as can be obtained. For these problems the repeti-
tive computer is not satisfactory.

12-3. Philbrick Computer. The most widely used repetitive com-
puter is the GAP/R Philbrick computer.* The earlier and still more
commonly used Philbrick equipment consists of a relatively large num-

* George A. Philbrick Researches, Ine., Boston, Mass,
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wave and will be g0 designated in the remainder of this chapter.

form of the delta wave is shown in Fig. 12-1.
The delta wave is formed by elipping the peaks from a 60-cy
sinusoidal signal and then reamplifying and amplitude-clipping the
peak signals. A block diagram

—'"b:_u'i“ " of the delta-wave generator i
+50 shown in Fig, 12-2 to make clear
the technique utilized in gene
2 ating the delta wave,
= Since the delta wave is formed

from a G0-cycle sinusoidal signs
-50 k- the duration of one complete
evele of the delta wave is Lgg
Fra. 12-1. Philbrick computer “delta see = 16 msee. Each segmen
wave" used as a forcing function in  of the delta wave is, therefore
problema. . . p

approximately 4 msee in duratiol
when the delta-wave generator is properly adjusted.

It will be recalled now that the time scale of the Philbrick com
ponents is such that 1 sec of real time is represented by 0.4
on the computer. BSince each segment of the delta wave is approxi
mately 4.0 msec in duration, each segment of the delta wave repre
sents 10 sec of real time. In order to interpret the time scale of th

—%— B ~ o Amplifier __l:LD.

Clipper and
clipper

60 cps Delta wave

Frg, 12-2. Delta-wave generator.

computer when the computed results of a problem are presented o
an oscilloscope, it is necessary to adjust the horizontal gain of tk
oscilloscope to cause the delta wave to occupy 10 convenient umit
on the oscilloscope sereen. Each unit on the sereen then represen
1 sec of problem time on the computer.

When the horizontal gain of the oscilloscope is attenuated until
complete eycle of the delta wave can be seen on the oscilloscope, th
solution of a problem appears to take place four times on the com
puter. The computer transient is excited by each step change in volt=
age of the delta wave. In use, the horizontal gain of the oscilloseop
iz adjusted as previously described in order that the transient response
due to only one segment of the delta wave can be seen on the oseille
scope. Normally, the positive step of the delta wave is the portion
displayed.
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The very nature of the delta wave imposes a limitation on the variety
of problems that can be solved on the computer when using it as a com-
puting stimulus. Effectively, only 10 sec of real time can be observed
in the solution of a problem., Of course, a time-scale change can be
made in a problem such that the problem solution is slowed or speeded
up as desired. Similar to the real-time computers, the repetitive com-
puter ig troubled by phase shift. 'There is, therefore, an upper limit
to the problem frequencies usable in the solution of problems and a
very finite problem time interval

that can be displayed on the ozecillo- ~ Jfflﬂ mping signal
scope when using the delta wave as —— [\
the stimulus. _L_'| ! :

It is this restriction in problem- 4
computing time that has led to the 0.004 uf

more widespread use of a simple U
rectangular voltage form as the
computing stimulus for repetitive m d_?'ﬂgﬁ}";r .
computers. For the same reason,

a computing stimulus having a rep-  Fia. 12-3. System for clamping an
etition rate of 10 cps has become integrator output to zero at prede-
more widely used. Utilizing a rec- ermined times.

-tangular wave as the computing stimulus and a repetition rate of 10
cps, each computing interval ean be used to represent over 200 sec of
real time.

12-4. Initial Conditions. On the repetitive computer the techniques
used in resetting the computer integrators to zero and applying the
proper initial conditions to them must, by necessity, differ from the
methods used on real-time computers, Providing the problem being
solved on the repetitive computer is sufficiently stable to allow the
transient response to die out during the computing interval and pro-
viding that no initial conditions are present in the system, no pro-
vision need be made for resetting the computer integrators to zero,
since one complete cycle of a rectangular computing stimulus auto-
matically returns the output of the computing amplifiers to zero. If,
however, the problem transient does not die out in a computing cyele,
provision must be made to reset the integrators to zero. Figure 12-3
shows one way of clamping the output of an integrator to zero at a pre-
determined time. The double triode shown in the figure is normally
biased beyond cutoff. At a predetermined time a positive bias is
placed on the grids of the double triodes and one or the other of the
triodes conducts, forming a low-impedance shunt around the inte-
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grating condenser. Most of the Philbrick computer integrators have
provision for introducing a clamping signal.
The manner in which the clamping signal is generated is of interest,
since it makes use of the delta wave and a K3-V component. As indi-
cated in Table 12-1, the K3-V is an absolute-value component. Also,
in Table 12-1, it is indicated that the K3-V has two alternate outputs.
The selection of the desired output is made by throwing a switeh
located on the front of the component. With the switch in the up
position, the transfer function of

+5ok 2 the component is
| , et tz,= Alz]  (12-1)
wave where 0 < A < 100 is a constant
-50} L4 that can be set by a dial on the
+50 component. With the switch in
_ the down position, the transfe
0 ':F;'E"rf:;‘? function is
. | r, = A2z, — 50) (12-2)

Fra. 12-4. The clamping signal derived 14 g the negative output of the

LEP.;::“TM wave using the K3V gy component that is used as
the clamping signal for the integ

tors when the delta wave is used as the input and the switch is se
so that Eq. (12-2) is satisfied by the component.
Figure 12-4 shows the delta wave and the clamping signal derived
from the delta wave by using a K3-V component. It is apparent ths
the voltage waveform shown in Fig. 12-4 satisfies the requirements of
a clamping signal. During the portion of the delta wave indicated b
1 and 3 in the diagram, the clamping signal is a large positive voltag
so that the triodes shown in Fig. 12-3 conduet, shorting the output of
the integrator to zero. During the portions of the delta wave ind:
cated by 2 and 4 in Fig. 12-3, the clamping signal is a large negativ
voltage that cuts off both triodes in the integrator feedback path.
integrator ig, therefore, allowed to function in a normal manner.
The clamping provision on the integrator satisfies the requirement
that the integrator output be made equal to zero at the start of
compute cycle. It does not in any way provide for the insert'on ¢
initial conditions other than zero in a problem. If initial condition
on the output of integrators are needed in the solution of a partieu
problem, they must be provided by adding an appropriate voltage
the output of the integrators. An adder component must, therefo
be provided at the appropriate place in the computing cireuit to pre
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vide for the insertion of initial conditions when they have values other
than zero.

12-5. Problem Setup. A few illustrative examples of problem set-
ups for a Philbrick computer will help clarify the use of the equip-
ment in the solution of problems.

* e K,
% ¥ K P +ap %
Kip  |jo—y
Fi1a. 12-5. Bloek diagram of a simple servomechanism system.
Ly -e [C . —2da, +e; [C, - Ky
-8, = K, N “-—1 " K: -
Kspé,
Cy K, |
“Koep—
Cy Ay P, |h * 2 +8,
a —| ap#, - =pl, "

Fra. 12-6. Philbrick computer setup for the servomechanism systim described by
Fig. 12-5.

Example 12-1. Set up the simple servomechanism system deseribed in See. 4-3.
For convenience, the block diagram of the system is repeated here as Fig, 12-5. A
Philbrick computer diagram of the simple servomechanism system described in
Fig. 12-5 can be set up very easily from the block diagram. The circuit diagram
using only K3-A, K3-C, and K3-J components is shown in Fig. 12-6.

Examination of the cireuit of Fig. 12-6 reveals that it is very wasteful of equip-
ment. Binee each computer component in & circuit adds to the error in the prob-
lem solution, the results obtained from this eircuit would probably not be as satis-
factory as can be obtained by reducing the amount of equipment used.

In Fig. 12-7 the circuit diagram of Fig. 12-6 has been redrawn and considerable
equipment has been eliminated from the circuit. In this system the major dis-
ndvantage arises from the faet that the settings of coeflicient amplifiers ', and Cs

ppemililit, B s e et L e it e el e e D e S il T WL AR R A T Y
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are functions of more than one parameter of the problem. In some cases it is
desirable to retain some of the coefficient components that were eliminated from
the eireuit of Fig. 12-6, in order that the parameters of the problem K,, Ks, K, and
a can be adjusted separately. The most important saving of equipment in this

K
[ @ : Koz L
Ay -¢ |C1 Kk, - Az - I pf,
4 ) = - %p+ 1
- _ﬁ:JH:I Hﬂ C
a 2 EEHI »
a
-8, o
- -

Fiag. 12-7. Improved circuit diagram for the system of Fig. 12-5.

cireuit iz that made by replacing A, Jy, and C, by the unit lag component L. This
is made possible by noting that the transfer function

kses
y = 12-3
@ »* + ap ( )
can be expressed as
kst
- — 12-4
= rp+a (12-4)

An integrator and a K3-L component can be used to represent Eq. (12-4). The
constant K; must, of course, be adjusted at some other point in the circuit diagram

as indicated in Fig. 12-7.

The highly specialized nature of the Philbrick components almost
always leads to very wasteful cirenit diagrams unless care is taken to
use the special components provided such as the augmenting inte-
grator, the augmenting differentiator, the unit lag component, and the
dynamie component when they are applicable in a circuit diagram.

Example 12-2. Set up the cireuit for solution of the ayatem

dy
i

v(0) =1 (12-8)

In this system an initial condition on the problem variable is specified, and since
there is no provision on the equipment for the inelusion of initial values, provision

+ay =0 (12-5)

with the initial condition
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must be made in the preparation of the circuit diagram to introduce the initial
values into the system. Figure 12-8 shows a circuit capable of generating the
function described by Eqs. (12-5) and (12-6).

== 30
+y |G} -ay | = ¥~ Y0l 4,
. = - (0] -

L Cs

Fra. 12-8. Cirenit for the solution of dy/df 4+ ay = 0 for y(0) = 1.

The adjustment of scale factor on a repetitive computer is just as
important as the adjustment of scale factor on a real-time eomputer,
In fact, amplitude-scale factor is perhaps even more critical than on
the real-time computer, since the operating voltage range for most
repetitive computers is =+ 50 volts rather than =+ 100 volts as is used
on most real-time computers, Furthermore, it is difficult to adjust
voltage levels in a problem o that the operating voltage range of the
components throughout a Philbrick computer setup is uniform. T'his
difficulty is due to the absence of gain adjustments on any but the

- K3-C components. It is necessary, therefore, that voltage levels in

a problem be controlled almost entirely by the adjustment of the
problem time scale.

In the use of Philbrick equipment, very often the problems solved
are linear differential equations with constant coefficients. In the
solution of this class of problems, the scale factor of the computer
setup can be changed by changing the magnitude of the problem
foreing funetion. In calibrating the oscilloscope, the foreing funection
of the problem can be displayed on the oscilloscope as a ready means
of calibrating the scope to the desired scale. When used in this
manner, the actual voltage level in the problem is unimportant. The
voltage level should, however, be made as large as possible in order
that noise effects in the problem solution may be minimized.

12-6. Trends in the Design of Repetitive Computers. The design
of analog computer components as highly specialized special-purpose
units, which ean be interconnected in cookbook fashion to give the
solution of dynamic problems, has served a useful purpose in the past,
This design technique has permitted people with little or no previous
knowledge of analog-computer technigues to set up successfully sys-
tems of equations on the analog computer,

Sooner or later, as the experience of the user becomes greater, the
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specialized components become a handicap instead of an advantage.
More components are required in the solution of problems than are
required using general-purpose equipment, and furthermore there are
always unused components sitting on the shelf, since the particular
problem being solved may not require their use. At the same time,
there may be a shortage of other components needed in the problem.

Recently, the trend in the manufacture of repetitive computers has
been to make them more similar to real-time computers. For example,
the newer Philbrick K-2 components consist only of the high-gain d-¢
amplifiers, and the desired input and feedback impedances are patched
on the computer as needed in the solution of a particular problem.
The techniques of using the Philbrick K-2 components are, therefore,
very similar to the techniques of using a real-time computer.

The main source of information dealing specifically with the Phil-
brick computer components is the manufacturer of the equipment.
An excellent source of information regarding problems that have been
solved on repetitive computers and also regarding modifications that
have been made on repetitive equipment to make it more useful is the
Proceedings of the Philbrick Computer Symposiums. These confer-
ences were organized by Philbrick computer users of the Middle W
to aequaint each other with problems they had encountered and the
solutions they had obtained for these problems. To date, four syms=
posiums have been conducted.

A repetitive computer that should receive mention at this point
that built at the Massachusetts Institute of Technology under t
direction of Macnee.! Unlike the Philbrick repetitive computer, t
Macnee computer employs a-c¢ rather than d-e amplifiers. The use
a-c amplifiers in the computer eliminates the need for regulated po
supplies such as are necessary for d-c amplifiers. The accuracy of t
computer is of the same order of magnitude as that of the other existi
repetitive computers.
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CHAPTER 13

THE DIGITAL INTEGRATING
DIFFERENTIAL ANALYZER

13-1. Historical Development. A more recent innovation in the
computing field than even the electroniec analog computer is the digital
integrating differential analyzer. The forerunner of the present-day
digital integrating differential analyzers was built at Northrap Alreraft
Corporation' under an Air Foree contract.  Although the protolype
computer was designed for possible air-borne applications, it did not
take long for the designers to realize the commercinl possibilitios of
the computer. A production model computer, the MADDIDA, was
built and placed on the market in 1950."

A series of unfortunate circumstances delayed the widesproad accept-
ance and use of the MADDIDA. Like its prototype, the MADDIDA
design was based upon the binary number system, a system very awk-
ward to use without adequate conversion equipment. To make mat-
ters worse, the early binary-to-decimal conversion equipment and the
early recording equipment gave considerable difficulty in actual use,
Other disadvantages of the early computers were that (1) troubles were
frequently encountered in the computer that were attributed to insuf-
ficient design tolerances in the computer components, and (2) the input
of data into the computer required the operator to perform the tedious
process of filling each integrator serially, using a binary keybourd,

The warm reception that the MADDIDA first met soon faded, and
eventually the computer was withdrawn from the market. Recently,
more mature versions of the digital integrating differential analyzer
type of computers have been introduced to the market, and it is
believed that they will make a real place for themselves in the com-
puting field.

13-2. Design Features of the Newer Digital Integrating Differential
Analyzers. There are presently two digital integrating differential
analyzers in commercial production; one is produced by Bendix Avi-
ation Corporation® and the other by the Computer Research Corpo-
ration." No attempt will be made here to compare the features of

. - a

-
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the two machines, as the basic principles of operation are similar.
A general description of these computers will be made, however, to
indicate in a general way the capabilities of this class of computing
equipment.

The more recently designed digital integrating differential analyzers
operate in the decimal number system, so that no external conversion
equipment needs to be provided for converting numbers from the base 2
to the base 10 number system, as was necessary with the MADDIDA,
This one design feature provides considerable operating convenience
over the earlier MADDIDA computer.

The present-day digital integrating differential analyzers have 60
integrators. Each integrator has a capacity of six digits plus sign in
itz storage registers and has the capability of multiplying its output
by a six-digit constant multiplier that is restricted to lie in the range
4+ 1. Other features have been incorporated into the design of the
computers that provide considerable flexibility of operation. For
example, special coding is provided in the computers to multiply a
variable arbitrarily by the sign of any other variable in the problem.
This feature allows choice functions to be performed. Similarly, any
integrator can be coded to limit its output arbitrarily. This allows
the representation of nonlinear phenomena to be accomplished on the
computer,

Other features that make the newer digital integrating differential
analyzers more convenient to operate than their predecessors are their
input-output systems. The filling of coding instructions into the
present-day computers is accomplished by typing the required infor-
mation on a 10-key decimal keyboard. The computers can be coded
to stop at predetermined points in the caleulation and print out desired
data on an electric typewriter.

To one familiar with electronic analog computers, a G60-integrator
computer sounds like quite a large-capacity machine. It should be
pointed out, however, that these integrators are used for all the mathe-
matical operations performed by the computer. The processes of addis
tion, subtraction, and integration require one integrator each, while
multiplication requires two or three integrators, depending upon how
the output is to be used. A 60-integrator differential analyzer has,
therefore, somewhat less capacity than a 60-amplifier electronic ana-
log computer. Just as in the electronic analog computers, several
digital integrating differential analyzers may be ganged together to
solve problems requiring capacities greater than that provided by
gingle machine.
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13-3. Operation of the Digital Integrating Differential Analyzer.
The digital integrating differential analyzer operates in a manner very
gimilar to the mechanical differential analyzer of the Bush type.* The
coding for the mechanical differential analyzer and the digital inte-
grating differential analyzer is very similar; in fact, identical coding
sheets may be used for the coding of the two devices. The main dif-
ference lies in the manner of performing integrations and in the manner
of transmitting information between the components of the computers.
To provide an analogy and to thus

simplify the explanation of the dig- -
ital integrator, the mechanical in- |
tegrator will first be deseribed. e

The mechanical integrator (see
Fig. 13-1) consists of a flat disk,
a wheel resting upon the disk, and
a lead-screw mechanism to control
the radial postioning of the wheel
on the disk. Any incremental ro-
tation of the disk dr causes a ro-
tation of the wheel dz proportional
to ¥ and to dr and inversely pro-

portional to the size of the wheel k. The angular incremental rota-
tion of the wheel may, therefore, be defined as

Fia. 13-1. Mechanical integrator.

|
dz = -L;yt!'.t (13-1)

If, at the same time that r is rotated, a differential input dy is applied
to the lead screw, the shaft position z is proportional to the integral
of ¥ with respect to z, or

1
z=Efym (13-2)

The graphical interpretation of integration as the summation of the
area under a curve is useful in understanding the digital integrator,
The original concept of the definite integral is based upon just such a
summation. In Fig. 13-2, y(z) 15 a function of z and is continuous
in the interval a to b. If the interval (a,b) is divided into m sub-
intervals by inserting points of subdivision

a=rn<rn <1< " <zr.=h

and Az; = zyy — xy, the limit of the sum as m — = in such a manner
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that Azx; — 0 simultaneously is

lim iyiu.: [ yda (13-3)

Az 1=1
If the method of subdivision is specialized such that all intervals
Az; are equal, then

Ll
[[vdz = lim az ) u (134)
! meE e
For any preassigned error ¢, a Ar > 0 can be found such that

L’yﬁ-axfy.-m (13-5)

pm=]

Equation (13-5) simply states that an integral may be approximated

Add [=— Ax

&

1 N Y ¥ “ E -l—-j.’l

a x x X X4 X1 b

Fio. 13-2. Geometrical interpretation of Fic. 13-3. The digital integrator.

the definite integral,
arbitrarily close by summing the dependent variable y; at discrete s
of the independent variable z; and multiplying the sum by Az. It
this process that is mechanized in the digital integrator.
Considering again the diagram of Fig. 13-2, it is evident that yiy
may be formed by adding Ay; to y;. This immediately leads to the
configuration of an integrator given in Fig. 13-3.* It consists of two
summing registers V and ¥, where incremental inputs Ay, are added
into the ¥ register and the contents of the ¥ register is added to
V register at each incremental step Az of the independent varia
The lower register contains the value of y; at the time the calculation
has reached the point z;; the upper register contains the partial sum

V = M‘EI Vi (13-6)

i=1
which is a satisfactory approximation to [y dz,
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Consider the upper register ¥ to be split into two parts, a Z and an
R section. The R section contains the same number of digit spaces
as the ¥ register and overflows from its highest-order digit into the
Z section. It is the overflow from the R section which corresponds
to the change Az of the mechanical integrator as the disk is rotated
an inerement Ar. The rate at which the overflow occurs is a function
of the magnitude of the quantity stored in ¥ and the number of digits
carried in the ¥ and R registers. A schematic diagram showing the
overflow from the R section of the integrator is shown in Fig. 13-4,

}?-[n‘ﬂzr-] o PO s (B RS 3P

Add (e Ay

¥ ¥ - 3 —Ay

Fia. 13-4. The digital integrator showing the overflow from the R section of the
integrator into a hypothetical Z section not actually incorporated in the digital
integrator,

In the figure the square brackets [ | are used to signify the greatesl
integers in and the braces | | are used to signify the fractional part of.

The operation of the digital integrator may be summarized by say-
ing that Az corresponds to }{o™ where n is the number of digits in the
registers, Az is the ineremental change in the output of the integrator,
The sum of Az stored in the Z register represents the total integral,
It is the incremental change Az that is of greatest interest, as this
quantity may be used as the inputs to other integrators. The actual
computer does nol contain a register corresponding to the Z register
shown in Fig. 13-4, If it is desired to sum the incremental changes Az,
it is necessary to do so in the ¥ section of another integrator, The
Z register shown in the figure was included only as an aid to the reader
in understanding the integration process,

13-4, The Number System. The requirements placed on a general-
purpose integrator are such that it must handle signed information at
its inputs and outputs. The mechanization of such a requirement,
by considering the sign of both y and dr and attaching the correct
symbol, offers considerable difficulty. One method of overcoming this
apparent difficulty is by the use of a simple but ingenious number
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system. In order to mechanize this number system, it is necessary
to add one binary digit space to the left end of the ¥ and R registers.
The decimal point is then assigned to lie just to the right of this digit.

The number system used® extends from zero to 2. Corresponding
to zero and 2 in the machine-number system are —1 and 41 in the
real-number system. Problems to be solved on the computer must,
therefore, be scaled, or normalized, so that the largest expected magni-
tude of any variable lies in the range +1.0.

A maximum negative input rate to an integrator is defined as an
absence of pulses in every pulse position, and a maximum positive rate
corresponds to a sequence of pulses in every pulse position. A zero rate
similarly corresponds to an alternating series of 0, 1, 0,1, 0,1, . . .,
where 1 is used to signify the presence of a pulse and 0 represents the
absence of a pulse in a pulse position. A few numerieal examples will
illustrate the characteristies of this number system.

Assume that zero is the value placed in the V register and that
this value is to be integrated. A zero in the machine-number system
corresponds to a 1 in the binary digit space to the left of the decimal
point with all other digits equal to zero. Further, assume that the
ealeulation is proceeding in successive steps of dr.  With each step in
dr the contents of the Y register is added to the contents of the B
register. The quantity in the ¥ and R registers and the K overflow dz
appears as in Egs. (13-7). Note that an overflow dz occurs each ti
the sum of the quantities in the ¥ and R registers exceeds 1.999 - - -,

0.000 R
1.000 ¥
dz = 0« 1.000 R
1.000 ¥
1.000 ¥V
dz = 0« 1.000 R
1000 ¥
dz = 1 « 0.000

(13-7)

L]

The dz overflow is 0, 1,0, 1,0, 1, . . . , which in the machine-number
system represents zero, the correct output for y = 0. As a fu
illustration, consider the representation of the real number 0.5.

the machine-number system this is represented as 1.500 - - -,

e e e
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aaaf.mﬂng this number to be present in the ¥ register and the compu-
tation to be proceeding for successive steps in dz, the contents of
the registers and overflows are as represented in Eqs. (13-8).

0.000 &

1.5 ¥

dz = 0+ 1.500

1500 ¥

dz = 1 « 1.000 K

1.500 ¥

dz = 1 « 0.500 R
'fi‘"‘“ﬁif (13-8)

dz = 1« 0.000 &

1.500 ¥

dz = 0« 1.500 &
Bimilarly, the real number —0.5 is represented as 0.5000 - « « in the

machine system. If this is placed in the ¥V register and summed in
the & register, there results

0,000 i
0.500 ¥
dz = () « 0.500 R
0.500 YV
dz = 0« 1000 i
0.500 Y
dz = 0« 1.500 &
0.500 ¥
dz = 1« 0,000 R

(13-0)

Tabulating the results of Eqs. (13-7) to (13-9) for the first eight
steps in dr and assigning a weight of 41 to each pulse and —1 for
each absence of a pulse makes it readily apparent that the results are
completely compatible with the real numbers represented, These
results are tabulated in Table 13-1,

Another important aspect of the number system used in the digital
integrating differentinl analyzers is that it is effectively circular, By
this it is meant that, upon reaching the maximum positive number
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that may be stored in the ¥ register, 1.999 - + - | corresponding to &
maximum positive rate dz, the addition of one more pulse into the ¥
register changes its value to 0.000 - - - , corresponding to the maxi-
mum negative rate. This peculiarity of the number system has proved
very valuable in the setup of certain functions, as it permits a servoing
action to be achieved,

TasLe 13-1
Maximum negative rate: ¥ = 0.0 0 0 0 L1} 0 1] 0 o
Weight =] =1 =1 =1 =1 —-1 —-1 =1= =8
Half maximum nogative rate: 7 o= 0.5 0 L] 0 1 0 0 L] i
Weight =1 =1 =1 41 -1 =1 =1 41 = =4
Fero rate: ¥ o= 1.0 0 1 0 1 0 1 [} 1
Weight =1 41 =1 +1 =1 41 =1 +1l= 0
Hall maximam positive rute: F = L5 L] 1 1 1 0 1 1 i
Weight =1 41 41 +1 =1 <41 =1 =1 =44
Maximum positive rate: ¥Fou L0 -- - 1 1 1 1 1 i i i
Weight +1 #+1 41 41 41 +1 +1 41 = 48

In the setup of problems on the computer, quite frequently the dz
input of one integrator is supplied by the dz output of another inte-
grator. The dzr input of an integrator must, therefore, be in the same
number system that is used as the dz output of the integrators. An
actual step in dr is accomplished only when two pulses oceur in sue-
cession. What this means is that each time a pulse input dx
the contents of ¥ must be added to R, and in the absence of a pu
input to dz, ¥ must be subtracted from R.

Constructing a subtractor as well as an adder would be very w
ful of equipment. The necessity of providing a subtractor is elimi
nated by accomplishing subtraction by the addition of the machi
complement on 2 rather than actually performing the operation of su
traction. As will subsequently be shown, obtaining the 2's comp
ment of a number is a very simple process.

In order to obtain the 2's complement of a number in the num
system being discussed, all that is necessary is to replace all zeros by 1
and all I’s by zeros in the number. To clarify this statement, consid
the machine number 1.75. The complement on 2.0 of 1.75 is 0.
The machine number 1.75 is represented as the repeating sequence

Machine 1.75 =0,1,1,1,1,1, 1,1, . ..
Changing all zeros to 1's and 1's to zeros gives the sequence
1,0,0,0,0,0,0,0, ...

Again assigning a weighting of +1 to each pulse (1) and —1 to
absence of a pulse (0), gives an average over the eight pulses of
quarter the maximum negative number. But one-quarter the m
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mum negative number is the machine number 0.25, the desired
complement.

A numerical example amply demonstrates the validity of adding to
the R register the content of the ¥ register, or the complement of the
content of that register, depending upon whether the Az input is a
1 or zero respectively., Assume Y = 1.75: this is the machine num-
ber for 0.75. The machine complement is 0.25. If dx is a zero rate,

dz - R

Add Y o R
Add machine complement

dx=1

dx=0

:Igm'tl )
r y positive
0 for ¥ negative —= Y

Add 1 te ¥

1
ad {D Subtract 1 from y

3

Decimal point
F1a. 13-5. The complete digital-integrator configuration,

the quantity in the ¥ and R registers and the dz overflow will be as in
Eqgs. (13-10):

0.000 R
1.7 Ydr = 1 add
dz = 0175 R
025 Ydr =0 add machine complement
dz = 1+« 0.00 R (13-10)
1.7 Vdr = 1 add
dz =0 175 R
0.25 Ydr = 0  add machine complement

dz =1+« 000 R
It is readily apparent that the sequence of overflows
dz = 0,1,0,1,0,1, ...

is correct for a zero input dz.

The actual form of the digital integrator is shown in Fig. 13-5. It is
apparent that to represent the sign of a quantity in a ¥ register, it is
necessary to insert a gero or 1 in the left-hand binary column of the
register, depending upon whether the number to be represented is
negative or positive,
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19-5. Communication between Integrators. In the electronic ana-
log computers, interconnections between machine components are
made by physically interconnecting the components with patch cords.
In the digital integrating differential analyzer a memory in the form
of a magnetic drum serves as the ¥ and R registers of the integrators
and as a means of communication between integrators. Similarly, a
single track on the magnetic drum is provided for the storage of the
single digit that is the dz output of each integrator. All arithmetie

operations are performed serially for one in-

dx = i tegrator at a time in a single arithmetie
p unit empowered with the ability to add and
z d complement numbers. The magnetic drum

Fig. 13-6. Symbol for a glso has channels serving as the coding
digital integrator. .

storage for each integrator to control the
proper selection of information from the ¥, &, and dz memory channels
as determined by the coding.

The operation of the computer can be broken down into steps.
First, for a particular integrator, under control of the coding, the dz
storage locations of all the integrators are scanned to obtain the cor-
rect dx and dy inputs for the integrator. The dz input is either a 0
or a 1. If more than one dy input is indicated in the coding, these
quantities will be summed in the arithmetic unit and the sum will form
the actual dy input. The dy input iz not added to ¥ at this time.
In the next operating step, the quantity in the 1" storage register i8
added to the quantity in the R register and any overflow is placed in
the appropriate dz storage space on the magnetic drum, Finally, the
dy input is added to ¥ and the process is completed for the single
integrator. A similar process of selection and addition is carried out
in turn for each of the integrators in the computer in completing one
eycle of operation.

13-6. The Coding Diagram. The symbol most commonly used to
represent a digital integrator is shown in Fig. 13-6. The initial portion
of the coding for the computer proceeds in a manner very analogous to
that for a mechanical differential analyzer or for an electronmice analog
computer. A few simple problem setups will illustrate the similarity.

Example 13-1
dy y (13-11)

dr
As always, the setup can be started by assuming the existence of the highest-order
derivative and then proceeding to form the quantities necessary to realize it. For
Example 13-1, the cireuit diagram is shown in Fig. 13-7. The dz input, the prob-
lem independent variable, is provided from a timing channel on the magnetic
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drum. Equation (13-11) states that y = dy/dx; therefore, summing dy (by intro-

dx dx
dy
4 a';ﬁ dx =dy
a "

Fia. 13-7. Bchematic diagram for the solution of Example 1.

ugz:ﬂhi 125 in the dy input) produces dy/dz, the quantity originally assumed to be

Example 13-2

d*e@  de
G t2w=0 (13-12)

Again the setup may proceed as for the electroni i
diagram can be drawn as in Fig. 13-8, ronis analag oemputer and the alreaty

D e

o . VA=Y di
ar " a2 ~did8 [d)
dt \vﬂ
. 2 -2 dé
_de / =did# /dlt]
&
-2dp

=28

Fia. 13-8. Bchematic diagram for the solution of Example 2,

uﬁb. process t.hrat is very fundamental to analog computers is multi-
pl {::aunfl. As in the. case of the mechanical differential analyzer, the
digital integrating differential analyzer multiplies by the process of

integration b : i i
Stew y parts. The following example will make the process

Example 13-3. Form the product ur where u and » ariahles
the problem. The fundamental differential property o o

d (ur) = ude + vdu (12-13)

the
m means of performing multiplication, This equation is mechanised in
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If the u dv and » du outputs shown in Fig. 13-9 are to be used
the dy inputs of a third integrator, they may be summed at the d
input of the third integrator. If they must be used as a dz input,
they must first be summed in the } section of a separate integrator,
as no provision is made for multiple dz inputs. The number of in
grators required in performing a multiplication is, therefore, either two
or three, depending upon how the product is to be used in subsequent
caleulations.

The preparation of the symbolic diagram is only the first step of

the problem preparation. The

du v, g other major steps in preparing the
problem for solution are:
u du i 1. Coding to effect the proper
5 | duw)  selection of dr and dy inputs on
- @ 1 the machine.
v du 2. Determining the range of t

variables so that proper scaling
the problem may be accomplished,

3. Scaling the variables or ad
justing their magnitude to fit t
numerical range of the computer

4. Determining the proper initial condition for each integrand i
the computer. This step is, of course, dependent upon the scal
established in step 3.

5. Establishing the coding to provide the proper connection of inpu
and output devices.

6. Placing the problem on the computer. This consists of typi
the numerical information regarding each integrator into the compu
on a keyboard. The information includes the location of the dx and
dy inputs and the initial value of the integrand for each integrator.

13-7. Conclusions. The digital integrating differential analyzer is
a very ingenious device that should establish a firm place for itself in
the computing field. The equipment is more readily adapted to t
solution of some problems than is the electronic analog computer,
Notable among these problems is the solution of simultaneous alge-
braic equations. The greatest utility of the equipment arises, how-
ever, in the solution of systems of differential equations where the
precision of the electronic analog computer is not sufficiently great to
satisfy the problem requirements.

At present the digital integrating differential analyzer offers little
threat of replacing the electronic analog computer. Its disadvantage

dv

u

Fra. 13-8. A circuit for performing the
operation of multiplication using digital
integrators.
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is its operating speed. When it is coded to produce an accuracy
approximately equivalent to that achieved by most electronic analog
computers, its speed is approximately ten times slower. As each
decimal digit of additional accuracy is required from the computer,
its speed is slowed by a factor of 10. Thus, if it ean operate at one-
tenth the speed of an electronic analog computer while achieving
three-significant-figure accuracy, its work output is reduced to one
ten-thousandth of the work output of an electronic analog computer
when it is coded for six-figure aceuracy in its integrators.

The pulse rate at which the present-day digital integrating differ-
ential analyzers operate is approximately 100 ke.  Although this com-
pares fairly well with many large-scale digital computers (some achieve
near-megacycle pulse rates) the serial nature of the computer results in
considerably slower operation than a parallel digital computer oper-
ating at comparable pulse rates. In the solution of differential equa~
tions, however, the machine has the great advantage of retaining an
analog coding scheme. The problem preparation time is, therefore,
much less than for any general-purpose digital computer, as inte-
grations must be programmed as step-by-step processes on the digital
computers.

Perhaps in the future, as the rapid advance of digital computer
technology continues, the large-scale digital computer will squeesze the
lower-cost digital integrating differential analyzers from the market,
When that day comes, the need for electronic analog computers will
similarly be reduced. Before that day, however, several significant
advancements must be made. The digital computer must be minin-
turized, its cost must be greatly reduced, and, above all else, its coding
must be simplified. Great strides have already been made in these
directions in recent years, but there is still some distance to travel,

The most complete and authoritative descriptions of the mode of
operation and the methods of setup of problems on the digital differ-
ential analyzers are contained in the manufacturers’ operation manuals
for the commercially available digital differential analyzers. The man-
uals contain a considerable number of illustrative examples giving the
methods of setting up problems for the computers and in addition treat
the problem of the proper scaling of problems for solution on the com-
puters in considerable detail. The interested reader is referred to the
manufacturers’ manuals for more detailed information concerning the
computers than is contained in this chapter.

Several papers have been written concerning the digital integrating
differential analyzers. Some of these are listed below,**

s n e
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PROBLEMS

18-1. What is the sequence of pulses representing the dz output of a digi

integrator if the contents of the ¥ register is the real number 0.25 (machine n
ber 1.25)7 Show that the average dr output for eight pulse times corresponds
one-fourth the maximum positive output rate of the integrator.

183-2. What is the sequence of pulses representing the dz output of a digi
integrator if the contents of the ¥ register is the real number —=0.757 Bhow
the average dz output for eight pulse times corresponds to three-fourths the m
mum negative rate of the integrator.

18-3. Bhow the interconnection disgram for the digital differential analy
aolution of the equation

dly | o dy -
5o + 350+ 10y = 10

13-4. Prepare an interconnection diagram for the internal generation of
function

yo=e™

where time is the problem independent variable,
18-6. Prepare an interconnection diagram for the solution of the equation

d%y dy -
o T gy +dy =10
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APPENDIX

A-1. The Terminology of Differential Equations. A differential equation ean
be defined a8 a statement of the relationship between variables and their deriva-
tives. A differential equation is ordinary if it contains only total d:rhrn‘u‘.vu and
has only one independent variable (frequently time or distance). A differentinl
equation is a partial differential equation when it involves a function of more than
one variable and some of its partial derivatives. The solution of partial differ-
ential equations usually is more diffieult than the solution of ordinary differential
equations. Unfortunately this is true when using the electronic differential ana-
lyser as well as when other methods are employed.

A derivative is the expression of the relative changes of two varinbles. More
simply, a derivative can always be interpreted as a rate. The reader will find
that if he interprets derivatives as rates he will be better able to use an snalog
computer a8 a tool to help him think in terms of the physical problem being solved,

Integration on an analog computer can be interpreted in the original sense of
the Riemann integral, i.e., as the summation of the area under a eurve.  An alter-
nate interpretation of an integral that is useful is that integration is the process of
averaging or smoothing. These physical concepts aid the computer operator in
understanding the analog computer operation.

The order of a differential equation is the order of the highest derivative that
appears in the equation. Similarly the order of a system of differential equations
ia the order of the highest-order derivative that appears in the equation obtained
by reducing the system to a single equation.

The degree of a differential equation is the degree that its highest-order deriva-
tive would have if the equation were rationalized and eleared of fractions with
regard to all derivatives involved in it. As an example of the meaning of order
and degree of a differential equation, consider the following equations;

W _ 243 (A-1)
::%+h%+y-ﬂ‘ (A-2)
dy\*  [dy\?
(33'5) -(ﬁ) +3 (A-8)
C Ay . A M
E+§'+E-D (A=4)

Equations (A<1) to (A=3) are ordinary differential equations, wheroas Eq. (A-4)
is a partial differential equation involving three independent variables «, y, and &
u7
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Equation (A-1) is of first order and first degree. Equation (A-2) is of
order and first degree. Equation (A-3) i2 of second order and second d
Equation (A-4) is a second-order partial differential equation of first degree.

A differential equation is said to be linear when it is of the first degree in t
dependent variable and the derivatives. By this definition Eqs. (A-1) and (A
are linear, and Eq. (A-3) is nonlinear. A further distinetion can be made in
classification of linear differential equations. Equation (A-2) is linear but
nonconstant coefficients, whereas Eq. (A-1) i8 a linear differential equation with
constant coefficients.

A solution of a differential equation is a relation between the variables of &
differential equation which, when substituted into the equation, reduces it to an
identity. To solve a differential equation is therefore to make known the relation-
ship of these variables, The solution of a differential equation by classical methods
results in the expression of the solution in terms of familiar functions such as
exponentials, trigonometrie functions, ete. The term known is used in a much
broader sense here, however. [f the relationship of the variables of a differential
equation is known to any prescribed degree of accuracy, the result is a solution
of the equation. A graphical plot of the variables as a funetion of the independent
variable can, therefore, be a valid solution of the differential equations. Similarly
the point-by-peint solution of a differential equation by numerical methods is &
valid solution of the equation if any prescribed accuracy is satisfied.

A standard method of solving linear differential equations satisfying one or more
supplementary conditions is first to find all the solutions of the differential equa-
tion. This is normally called the general solution of the equation. It is them
necessary to find the particular solution of the equations by applying the supple-
mentary conditions expressed in the problem statement to the general solution
already obtained. The supplementary conditions are usually stated in the form
of initial conditiong or boundary conditions,

In the solution of differential equations on an analog computer the reverse pro-
cedure is normally followed., The supplementary conditions are included in the
computer setup, so that the results obtained from the computer are the unique
solutions in which the operator is interested. In general it is easy to modifly the
supplementary conditions of the problem so that the solution of the differential
equation under the influence of a large number of different initial conditions or
forcing functions may be easily and rapidly obtained. Similarly, changing the
parameters of the differential equation itself usually can be accomplished easily
and rapidly in the analog computer setup.

A linear ordinary differential equation with constant coefficients is of the form

T g Gt 4 - 4 aw = 1) (A-5)

The solution of Eq. (A-5) is the sum of the general solution of the homogeneous
equation
d™y d~y
dz Tt g
and any particular solutions of the complete equation.,
The general solution of the homogeneous equation is of the form

+ v agy =0 (A-ba)

y - ;Za aqn

e e S e L Sl e el i e et A
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where the a; are arbitrary constants and the y are independent solutions of the
equation, These n independent solutions of the homogeneous equation ean be
found by assuming that they are each of the form y = £, Bubstituting this
value of y into the homogensous equation, Eq. (A-5a), gives

(v v '+ -+ - Fagdy=0 {A-8)

Since y = 0 ig a trivial solution of K. (A-Ba), the interesting solutions must be
those obtained by setting the polynomial in 4 = O

T4 Oy sl e =0 (A-T)

This polynomial has n roots: ¥e, ¥ecty « « « 4 Ti. Providing the n roots are dis-
tinet, these n values of % can each be substituted inte the assumed form of the

solution to give
n L]
y - 2 aifjy = Z v (A-8)

i=1 i=]

as the general solution of the homogeneous equation. If repeated roots, say +.,
occur then the general solution of the homogeneous equation is

o=

y - Z Q¥+ (Gnsrm + + + + F Gulm1)erer (A-8a)

where m 18 the number of times the root 5. occurs in the polynomial (A-T).

The general solution of the homogeneous differential equation is independent
of any forcing function and ig thus sometimes called the fransient golution and
designated by a subscript {. The use of the term fransieni solulion arises sinoe,
for a differential equation representing a stable physical system, the solution of the
homogeneous equation always vanishes as r tends to infinity. The term sleady-
slate solulion i8 used to designate the particular solutions that arise as a result of
the foreing function of the nonhomogeneous equation.  Again the term was origi-
nated from physical considerations, as it is the portion of the solution remaining
alter the transient solution has vanished.

Example A-1. A constant force F is applied to a mass M free to move in the
direction of the applied force under the constraint of viseous friction K. The
equation of motion of the system is

M j—: + Kr = F {A-0)
Betting the left gide of Eq. (A-9) equal to zero gives the homogeneous equation
from which the characteristic roots of the equation can be obtained:

de
M Tl 4+ Kr =0 (A-10)

Proceeding as suggested above, let
gy = gavl
where r, is the transient solution; then

4 - oo
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Substituting these values for v, and dr/dl into Eq. (A-9) gives
(My + K)ae™ = (My + K)y =0

Since Eq. (A-0) is a first-order differential equation, there is only one characteristio
root. The value of this root is, of course,

==

T =

The transient solution is therefore

m = ae~UK/ME

The steady-state solution of the equation can be obtained in this simple case
by noting that in the steady-state condition the acceleration dv/dl is zero, since
the forcing function is a constant, Setting dv/d! equal to zero in Eq. (A-9) gives

F
Pp = T (A-12)

where p, represents the particular or steady-state solution. Combining the tran-
sient solution r; and the steady-state solution v, gives the solution of the equation
for the velocity v

v=mn + rp = ge AN +% (A-13)

It is important to note here that the differential equation and forcing function
do not completely determine the solution of the equation. This is apparent since
the coefficient a in Eq. (A-13) is still undetermined. It is necessary to determine
this constant in such a manner that the initial conditions of the problem are satis-
fied. Assume in this example that at time { = 0 the velocity is zero. Then from
Eq. (A-13) it can be seen that

¢=—% (A-14)
Substituting this value of a into Eq. (A-13) gives
p = I_FE (1 — g~lEsAN) (A-15)

The linear differential equation solved here is one of the simplest differential
equations having an interesting solution, but the method used in its solution is
valid for all ordinary linear differential equations with constant coefficients. The
task of solving even linear differential equations of higher order may become quite
laborious, however, as it is always necessary to determine the roots of the poly=-
nomial in v (the characteristic equation).

For linear differential equations with noneconstant coefficients and for nonlinear
differential equations, more powerful techniques than that demonstrated above
must be used. In fact it is not always true that an explicit solution of a differ-
ential equation can be found.

Since the solution of differential equations can be a very laborious task and
ginee their solution is of such vital importance to engineers, methods of solving
them by other than the classical methods have been sought with considerable
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success. Beveral methods of selving them by mechanical means have been devised.
The direct-analog or network-analyzer class of equipment is one of the oldest
methods used. ‘The mechanieal differential analyzer is another powerful tool for
use in solving differential equations. The electronic differential analyzer is an
even newer device developed as a tool for aiding in the solution of differential
equations,

A-2. Time Constants and Natural Frequencies. The differential equations
representing & great number of complex physical systems can be written in the
form of simultaneous first- and second-order linear differential equations having
constant coafficients. For this reason the analog-computer operator finds a knowl-
edge of first- and second-order equations very helpful in making a computer setup
of & system.

The first-order linear differential equation

dy -
T +ay =0 {A-16)

has a solution of the form
y o= Aet (A-17)

The solution of the equation is stable if a is positive, since y then approaches zero
as { becomes infinite. If a is negative, however, the solution is divergent or
unstable, sinee y increases without bound.

Tha lime constant of an exponential function is that value of time that causes
the exponent to become equal to —1.  Equation (A-17) is, therefore, expresaable as

y o= Adet/r (A-18)

where r, the time constant, is equal to 1/a. The time constant is thus the time
required for an exponential function to decay to 1/e times its initial value. Bimi-
larly in a period of four time constants the exponential function approaches to
within approximately 2 per cent of its final value. A useful assumption when
estimating the solution time of a problem on an analog computer is that expo-
nential transients die out in four time constants,

The second-order differential equation represented in general form as

Pz LKz =0 (A-19)

Mae 00

can be written in the special form

:T‘f + n;u.g 4wtz =0 (A-20)

where w, is the undamped natural frequency and [ is the damping ratio. The
undamped natural frequency has the units of radians per second and is 2= times
the frequency of oscillation of the system with zero damping. The damping ratio
is nondimensional and is the ratio of the actual damping of the system to the
damping required to produce a critically damped solution.

It is relatively simple to justify the definition of the parameters w, and | given
above. Betting the damping term of Eq. (A-19) equal to zero gives

diz K
d_l'-+ﬂ‘=—n (A-21)

. = —_—ra=
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K
ryyry = %} »\’E

A solution of the differential equation is therefore

:-hm(-gwi-) (A-22)

The roota of this equation are

Comparison of Eqs. (A-19) and (A-20) reveals that w, = +/K /M, the same result
that was indicated by the solution of Eq. (A-21).
The roots of Eq. (A-19) are

—IZ':I:VEEM"—H!’H (A-23)

Fig T2 =

For stable systems the roots r, and r: can take on three forms: (1) conjugate
complex roots with negative real parts (oseillatory), (2) equal negative real roots
(eritically damped), (3) unequal negative real roots (nonoseillatory). The con-
ditions giving critical damping are those sets of parameters that cause the quantity
under the radieal sign in Eq. (A-23) to be equal to zero. The critical damped
condition is therefore

O, =2+ MK
The actual damping term in Eq. (A-19) is C, so that

_c__ ¢ _ A-24
$ C. 2vVME  2Me, { )

This result is the same as that obtained by normalizing Eq. (A-19) and then
comparing the terms of Eqs. (A-19) and (A-20).

An effort should be made by the reader to memorize the form of the second-
order differential equation as given in Eq. (A-20). This form of the equation
reveals immediately the undamped natural frequency of the system and the rela-
tive stability of the system in terms of the damping ratio.

The actual frequency of oscillation of the damped system, Kq. (A-19), 18 given

by the expression
= aty W1 — [ (A-25)

The proof of the validity of Eq. {(A-25) will be left to the reader as an exercise,

A-3. Operator Notation. The use of operator notation has been widely adopted
in some phases of engineering work. This is particularly true in the field of auto-
matic control and in some aerodynamie studies. The satisfactory analog-computer
solution of differential equations expressed in operator notation frequently requires
the application of special techniques. These special technigques are discussed
extenzively in Chap. 4.

A brief description of the operator notation and its properties is given in the
remainder of this section. It is believed that the material presented here will be
gufficient to enable the reader with little previous exposure to the operator notation
to read intelligently the material in Chap. 4 and the other portions of this book
where the operator notation is used,
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The conventional differential operator is represented by p and indicates the
operation d/df, The second derivative operator is written as p* and stands for
dt/di2. In all cases the operator s sssumed to operate on the term to its right
when multiplieation of that term by the operator is indieated. The following
examples illustrate the use of the operator:

if:k‘
"= i
d'l
FIH - ,Iﬁ'lr
1 il
(p* + kip* + kiply = H +k:ﬁ+h%
dy , 2

One of the important properties of the operator is that for linear differential
equations the charneteristie squation may be obtained by substituting 4 for p in
the polynomial expression for the operator and equating the expression to sero,
This property makes the operator form particularly helpful in solving differential
equations by classieal methods,

Similar to the differentinl operator is the integral operator p~!, where p~' ia

defined by the equality
- |
LI
L

To show that p~! is the integral operator and to bring out certain restrictions in

- ita use, congider the equation

pIf() - f;m}d‘: (A-20)

Multiplying both sides of Eq, (A-20) by p gives
ppY() = p L : 1) dit - f- : ﬁ:i‘[:} i (A7)
or pp-f (1) = f(1) = fils) (A=2Ta)

Examination of Eq. (A-27a) reveals that p ! is the integral operator but that
certain restrictions apply in its use, First, dfit) /di must exist, and secondly, fifs)
must equal zero.

If Yip) is defined as an operator of the form

?(F} L ﬂﬂp. +ELP‘FI + s + ﬂ--l:F + s

in which the a’s are constants, we can associate with each Yi(p)a Y- (p). ¥-'(p)is
called the inverse or reciprocal of ¥Y{p), or

Yip) = pis

Similar to the relation between p and p~?, the formula Y-'{(p)Y(ply = y is cor-
rect only when y and its first (n—1) derivatives vanish at { = f,, In working
with inverse operators it should be kept in mind that y = ¥ '(p)f always implics
Yip)y = f and that ¥Y='(p)y = fimpliea y = YVip)f only in special ciroumstanoes,
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The use of the inverse operator provides a very convenient method of
ing the relationship of two variables. Consider, f
example, the equation of motion of a linear osci

such as is shown in Fig. A-1. The equation of mo
of the system ean be expressed in the two forms:

(A-28)

L A

c %x

M| o

M%’+ﬂu+xfm-,r

d*r dz
MEF+CE+K= I (A

where v = velocity
r = displacement
(' = goefficient of viseous friction
K = gpring constant
M = mass
f = fit) = forcing function
In operator notation Eqs. (A-28) and (A-29) can be written as

Fis. A-1. A linear os-
cillator with  wviscous
damping.

(M-p +C + L:) v =
(Mp* + Cp + K)z = f

Bince dr/dt = pz = v, both Eqs. (A-28) and (A-20) can be written as
(Mp* + Cp + K)v = pf (A-32)

This illustrates the fact that one variable may be replaced by anequivalent varia=
ble in the operator notation.

The transfer function is the expression that establishes the relationship of the
input and output variables of a system as an operator equation. For example,
the relationship between the veltage input and torque output of a d-c motor
might be written as

a
R TR
where a = constant
b = constant
T = torque

a8 = E-p]}liﬁ:l voltage
The expression a/(bp! + p) is, therefore, the transfer function expressing this
relationship.

An important property of the operator notation that makes it particularly use-
ful in the block-diagram representation of physical systems is that linear transfer
functions with constant coefficients can be multiplied as if they are algebraie
expressions. Therefore the over-all transfer function of a physical system formed
by the series connection of two components having transfer functions ¥ilp) and
Yilp) 18

Yip) = Vilp)¥alp) (A-33)

The application of this property in writing equations for physical systems allows
the engineer to represent a complex system as a group of amaller components
properly interconnected. The differential equation or transfer funetion of each
smaller component in the system can then be more easily represented mathe-
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matically. Applieation of Eq. (A-33) permits the engineer to combine the trans-
fer functions of the component parts of the system into a single differential equation
representing the composite system.

The representation of a system as a group of component parts is called a block
disgram of the system. This form of representation is widely used in the study of
servomechanisms and other phases of engineering wherein the transient behavior
of a system is of interest. The block-diagram method of representing systems is
discussed in Chap. 4.

A-4. Conditions for Stability. It is possible to find the characteristic roots of
a system of differentinl equations and gain considerable knowledge about the
nature of the solution of the system. For example, the system is stable and
nonoscillatory in the steady state if all the roots of the equation have negative
real parts. The presence of a single zero root does not affect this stable con-
dition, but the presence of multiple zero roots or repeated pure imaginary roots
causes the system to be unstable. The presence of conjugate complex roots indi-
cates a damped oseillatory system response. If, however, any root of the system
has a positive real part, the system is unstable. From the roots of the charac-
teristic equation it is possible to determine the relative stability of the system.
The study of servomechanisms includes a detailed treatment of the methods by
which this can be done.

The task of determining the roots of a system of equations of third order or
higher ean be laborious. Fortunately a method does exist that permits one to
determine system stability [rom the characteristic equation without solving for
the roots. The method does not give information regarding the degree of sta-
bility of & system but nevertheless is very useful. This method 8 known as

. Routh's eriterion.

The reader will find the method useful in checking analog-computer results and
also as a basis for determining the approximate frequencies of higher-order equa-
tions a8 an aid in preparing problems for computer solution. The remainder of
this section will be devoted to a statement, without proof, of as much of Routh's
criterion as is useful in analog-computer work.

The characteristic equation of an nth-order differential equation from which
any zero roots have been removed is

4+ ap +ay =10 (A-34)

ﬂl?‘+an—1p'-l+ e

where the a's are real, a, is positive, and n is a positive real integer. To apply
Routh’s criterion it is necessary to form an array of the coefficients of the charac-
teristic equation as

P
I.!-' 1

s [ I

Ogoi Oug (Ba_g " * * {A—E&}

The coefficients of the next row, as expressed in the form of determinants, are

iTw o - I s An
F._, | Om_1  Gu-3 - Bu—1 Bn—p s
[+ - Ay

Each succeeding row of the array is found by applying similar rules to the last
two rows. The procedure is continued until no terms remain. If it simplifies
the arithmetio of the procedure, each row of the array may be normalized before it
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is used in determining succeeding rows of the array. This is apparent from the
theory of determinants.
Example A-2. Let the characteristic equation of a system be

it 4+ 2p -+ 12p0 +p+6=10 (A-36)

The array is therefore

pt 4 =5 1

pt 2 12 (]

pt| —20 —11

p? 1 0.5338 (dividing by 11.24)

pt 4.48

p? 0.6338

The number of changes of sign in the left column of the array indicates the
number of roots of the system that have positive real parts. In the above example
there are two changes of sign in the first column of the array; the solution of the
problem is, therefore, unstable, since it has two roots with positive real parts.

Two exceptions to the rules for developing the array can occur. The frst
exception occurs when the first term in any row is zero and the other terms in
the row are not all zero. There are several methods of continuing the develop-
ment of the array when this occurs, but the simplest is to replace the zero term
by a small real constant «. Terms in ¢ can be neglected in completing the array
providing they are small compared to the remaining terms.

The second exception arises when all the coefficients of a particular row are zero.
When this oceurs roots are present in the equation that are loeated radially oppo-
gite each other in the imaginary plane and spaced equidistant from the origin.
These roots are contained in the polynomial formed from the last nonvanishing
row of the array.

If the derived equation formed by the last nonvanishing row has conjugate
imaginary roots, the system will exhibit a sustained oscillation as its solution.
If the roots are not pure imaginaries, then of course one of them must have a
positive real part and the system is unstable, as ean be determined by completing
the array.

The development of the stability array can be continued when a row of zeros
oecurs by replacing the row of zeros with the coefficients obtained by differentiating
the polynomial formed from the last nonzero row of the array.

Example A-8. Consider the system

(p* + p* + 2p* + 2p* + 3p + 3z =0 (A-37)
The first two rows are
p*(1 2 8
p*11 2 3

Performing the normal operations to obtain the third row of the array would pro-
duce & row of zeros, so that the alternative procedure must be followed. The

polynomial derived from the second row is
p+2pr+3 =0 (A-38)

Differentiating gives
dp* + 4p =0 (A-39)
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The coefficients of this squation can now be used to form the third row of the
array. After dividing by 4 to slmplify the work, the remainder of the array is

| 1 1 (dividing by 4)

pt 1 3
p | -2
p'| 3

The system is unstable, since there is a change of sign in the terms of the left-
hand eolumn of the array,

A-6. The Equivalence of jo and the Differential Operator p. A common
equality used in electrieal engineering is

; i
ju=p =
To show that ju in the frequency domain can be replaced by d/dt, the derivative

with respeet to time, in the time domain, is a simple procedure. This can be
accomplished by twice diferentinting the cosine funetion, as follows:

¥ o= cos wl (A-40)
Py = —w Bin wi
ply = —w? 008 wi (A-41)
Substituting Eq. (A-40) into Eq. (A-41) gives
Py = —uly
or po=y —w!=jy (A-42)

The reader may immediately inquire as to the validity of the result stated in
Eq. (A-42) for anything but sinusoidally varying functions. This is not & serious
restriction, however, as most functions of interest can be expressed as a sum of
sine or cosine terms by means of Fourier series or Fourier integral expansions,
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Computer results, presentation of, 5
Computers, classification of, 24
Control systems, computer, 195-198
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Curve fitting, 175, 176

evaluation of results of, 176
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second-order system, general form
of, 23, 251
terminology of, 247, 248
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Emch, G. F., 206
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Errors, in problem preparation (see
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Errors, in solution of differential
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(See also Function generation)
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natural logarithms, 93
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function generators)
Funetion multipliers (see Multipliers)
Funetion potentiometers, 147, 148
(See also Arbitrary-function gen-
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tion of, 150-163

GAP/R computer, 224-225
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Impulse (see Unit impulse function)
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Integral operator, 252-255
(See also Differential operators)
Integration, generalized, 96, 97
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Limiting, of output of integrator,
120-123
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ponents needed in solution of, 8
Loading effects, potentiometers, 13,
14
resolvers, 81
servomultipliers, 68, 69, 75, 76
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Logarithms, generation of, 93
(See also Function generation)

Lovell, C. A, 1

Loveman, B. D., 214

Macnee, A. B, 143, 144, 191-194,
232
MADDIDA, 233
(See also Digital integrating dif-
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Mathews, M. V., 62
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Mengel, A. 8., 162
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Multipliers, classification of, 136
crossed-felds, 143, 144
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time-divigion, principle of opera-
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dry friction, 113, 114
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(See also Automatic computer
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(See also Arbitrary-function gen-
erators)
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loading corrections of, 18, 14
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control system, 196-108
overload warning system, 104, 195
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Relays, computer control, 105-108
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initial conditions, 227-229
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time scale, 224-227
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eard-type, 79, 80
loading corrections, 81
polar transformation, 78-83
rectangular transformation, 78-86
rotation of axis, 78, 79
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Resolving servos (see Resolver)
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Roots of polynomials, 176-181
Routh's stability criterion, 24, 213,
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Seale factor, amplitude, 30—42
choice of, 30, 32
determination of magnitude of
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Second-order differential equation,
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Servomechanism systems, prepar-
ation of computer diagrams
for, from block diagram, 40-52
factored form of transfer
function, Hi-63
transfer-function form of repre-
sentation, 52-63
if initial conditions are pres-
ent, 55, 56
Simultaneous algebraic equations,
solution of, 166-168
Sine-cosine potentiometers, 79-81
(See also Resolver)
Spring-pendulum problem, choice of
time ecale for, 26, 27
Square root, 74, 75
Stability conditions, 255-257
Stabilization of d-¢c amplifiers, 141,
184180
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(See also D-¢ amplifiers)
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Tapped-potentiometer function gen-
erators, 157-159
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erators)
Teague, 1D, 8., 181
Time constants, definition of, 253
determination of, 22, 23
(See also Differential equations:
Undamped natural frequen-
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Time-divigion multiplier, 137-141
(See also Multipliers)
Time lag, true, 127-132
Time scale, choice of, 20-22
performance of change of, 28-30
repetitive computers, 224-227
Trajectories, computation of, 83-86
Transfer functions, application to
block-diagram notation, 46
definition of, 254
single-amplifier representation of,
H6-62
(See also Bervomechanism systems)
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02
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Tuned torsional pendulum, 33-38
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higher-order equations, 24, 25
(See also Differential equations)
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